RADC-TR-78-147, Volume I (of two) Final Technical Report September 1978 PARAMETRIC ANTENNA ANALYSIS SOFTWARE PACKAGE Aperture Theory and Design Tables Robert J. Hancock John R. Fricke Vanderbilt University Some = Fito Um & Ny VO12 - A061682 Approved for public release; distribution unlimited. ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, New York 13441 18 11 28 021 4- This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations. RADC-TR-78-147, Vol 1 (of two) has been reviewed and is approved for publication. Sonald a. Hildelinand APPROVED: DONALD A. HILDEBRAND Project Engineer APPROVED: Joseph L. RYERSON Technical Diractor Surveillance Division FOR THE COMMANDER: John F. Kuss JOHN P. HUSS Acting Chief, Plans Office If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (OCDR) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list. Do not return this copy. Retain or destroy. | SECURITY CHASSIFICATION OF THIS PAGE (When Date Entered) | . , | |---|---| | (19) REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS HEFORE COMPLETING FORM | | RADC-TR-78-147- VOLT (2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG-NUMBER | | (6) TITLE (and Subjillo) | PATER OF REBORT & BEINGS COVERED | | PARAMETRIC ANTENNA ANALYSIS SOFTWARE PACKAGE. | Final Zeohnical Kepert | | 1106 1682 | A. PERFORMING ORG. REPORT NUMBER | | 7. Author(a) Robert J./Hancock John R./Fricke (15) | F30602-75-C-0122 | | PERFORMING ORGANIZATION NAME AND ADDRESS VANDER DISTRIBUTION NAME AND ADDRESS VANDER DISTRIBUTION NAME AND ADDRESS P.O. Box 1655; Station B Nashville TN 37235 | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HIMBERS 62702F 95670017 | | () | | | Rome Air Development Center (OCDR) Griffias AFB NY 13441 | September of Pages 169 | | 14, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15, SECURITY CLASS, (of this topott) | | Same | UNCLASSIFIED | | (12) 168 p. | 15a. DECLASSIFICATION/DOWNGRADING | | | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A | | 16, DISTRIBUTION STATEMENT (of this Report) | | | Approved for public release; distribution unlimite | d. | | 17. DISTRIBUTION STATEMENT (of the chairect entered in Block 20, if different from | n Panaett | | | d ushari | | Sâme | | | 1 | | | RADC Project Engineer: Donald A. Hildebrand (OCDR |) | | This effort was conducted under the RADC Post-Doct | oral Program | | 13. KEY WORDS (Continue on reverse side it necessary and identity by block number) | | | Large Aperture Antennas | - | | Numerical Analysis Fast Fourier Transform | 1 | | Computer Programs | 5 | | Parametric Analysis | | | At the present time many programs exist that | anlaulate mallation nuttons | | of particular aperture-type antenna systems or conset of software is often needed for each antenna the described in this report is an effort to overcome for large aperture array antenna systems. The soft in is capable of modeling a wide variety of antenna goals were speed, accuracy, | figurations. However, a new hat is analyzed. The program this problem, particularly tware package described here- | | DD 1 FORM 1473 | | | DD 4 1174 4475 | UNCLASSIFIED | 256 940 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteral) SECURITY CLASSIFICATION OF THIS PACE(MAIN Data Entered) 20- (Concld) The antiware described provides a tool for accurate quantitative as well as qualitative aperture antenna analysis. Although intended primarily for far-field pattern analysis of large discrete planar arrays, the package can also be used to model reflector antenna systems and optical systems. Any specture which can be adequately modeled by an array of up to 1000 x 1000 sample points can be treated via the software package. The package has been designed to enable rapid parameter variations for various analytic purposes. Many commonly used factors, such as Taylor and Maylias weighting functions; aperture shapes, such as rectangular, circular and elliptical, as well as randomizing and statistical weightings for either amplitude of phase characteristics are built into the program. The report briefly reviews the theory involved, the parameters available, input and output requirements. Examples to illustrate usage are provided, as its a complete User Manual for the software package. #### **PREFACE** This effort was conducted by Vanderbilt University under the sponsor-ship of the Rome Air Development Center Post-Doctoral Program for RADC/OCSA. Mr. Don Hildebrand of RADC/OCDR was the task project engineer and provided overall technical direction and guidance. The RADC Post-Doctoral Program is a cooperative venture between RADC and some sixty-five universities eligible to participate in the program. Syracuse University (Department of Electrical Engineering), Purdue University (School of Electrical Engineering), Georgia Institute of Technology (School of Electrical Engineering) and State University of New York at Buffalo (Department of Electrical Engineering) act as prime contractor schools with other schools participating via sub-contracts with the prime schools. The U.S. Air Force Academy (Department of Electrical Engineering), Air Force Institute of Technology (Department of Electrical Engineering), and the Naval Post Graduate School (Department of Electrical Engineering) also participate in the program. The Post-Doctoral Program provides an opportunity for faculty at participating universities to spend up to one year full time on exploratory development and problem-solving efforts with the post-doctorals splitting their time between the customer location and their educational institutions. The program is totally customer-funded with current projects being undertaken for Rome Air Development Center (RADC), Space and Missile Systems Organization (SAMSO), Aeronautical Systems Division (ASD), Electronics Systems Division (ESD), Air Force Avionics Laboratory (AFAL), Foreign Technology Division (FTD), Air Force Weapons Laboratory (AFWL), Armament Development and Test Center (ADTC), Air Force Communications Service (AFCS), Aerospace Defense Command (ADC), Hq USAF, Defense Communications Agency (DCA), Navy, Army, Aerospace Medical Division (AMD), and Federal Aviation Administration (FAA). Further information about the RADC Post-Doctoral Program can be obtained from Mr. Jacob Scherer, RADC/RBC, Griffiss AFB, NY, 13441, telephone Autovon 587-2543, commercial (315) 330-2543. The works of numerous authors have provided a great deal of analytical information concerning antenna systems and their farfield radiation patterns. A comprehensive antenna performance analysis package, however, is singularly lacking. At the present time many programs exist that calculate the radiation pattern of particular antenna systems. However, a new set of software is often needed for each antenna that is analyzed. It seems desirable, then, that a software package be developed which will allow the quick and accurate calculation of realistic far-field radiation patterns. This report presents just such a development. The software package described herein is capable of modeling a wide variety of antenna configurations and has been given the name Parametric Antenna Analysis Software which is abbreviated to PAAS in future references. The results from any particular antenna evaluation using PAAS are available quickly and in a form that is easy to interpret. The key goals of this development have been speed, accuracy, and versatility with easily evaluated results. Via PAAS, the designer is provided with a tool for accurate quantitative as well as qualitative antenna analysis. A set of interactive computer programs or software modules are presented which give the user the necessary means to estimate the antenna pattern from a specified aperture excitation. This work is aimed primarily at the user who requires information regarding the far-field radiation pattern of discrete planar arrays. The principal applications of discrete planar arrays are sampled dish illumination functions evaluated in a reference plane and electronically scanned phased array antennas. 16 PAAS contains the software necessary to model the current distribution of an antenna array and compute the complex E-field radiation pattern which corresponds to the modeled distribution. Processing of the radiation pattern data by the user may include plotting or a special purpose processing for a particular user application. In this report the data are plotted for illustrative purposes to show the capabilities of PAAS. The data are plotted in one of two modes. A symbolic representation using alphanumeric characters gives an accurate quantitative look at various aspects of the pattern such as main lobe width and side lobe level. A pseudo three dimensional plot gives qualitative information about the same pattern. With the software package described in this report, the antenna designer can quickly and accurately determine the far-field radiation patterns for a specific antenna aperture excitation. The speed of this design tool allows the user to quickly change one parameter after another to evaluate the effect on the radiation pattern. The ability to make these evaluations quickly and accurately was considered essential to the success of this software package. This report has been divided into two volumes. Volume 1
contains: (1) A discussion of the modeling theory used in developing the PAAS modules, (2) appendix 1 which provides a cross reference between the input data and the figures shown in volume 1, and (3) appendices 2 and 3 which contain tables of the Taylor and Bayliss weighting functions. Volume 2 contains appendix 4 (PAAS user manuals) and appendix 5 (PAAS computer program documentation). #### **EVALUATION** Contract No. F30602-75-C-0122, Parametric Antenna Analysis Software Package (Vol I: Aperture Theory and Design Tables; Vol II: Computer Program Documentation and User Manuals) A complete, user-oriented, software package for use in performing parametric analyses of the spatial response of large aperture antennas has been developed under this effort. The package has been installed and tested on RADC's H6180 computer facility. The simulation is capable of modeling a wide variety of antenna configurations with speed and accuracy. It can provide both quantitative and qualitative results, and can model both reflector and array antennas of up to 1000 λ The software package can be used most efficiently by operating it via the Interactive Radar Simulator facilities developed under contract F30602-75-C-0063. However, it has been designed and implemented in such a way that it is also usable from any terminal having access to the Honeywell 6180 GCOS executive. In this usage, the program can be run using the CARDIN subsystem. It is planned to make extensive use of this software package for studies being conducted under RADC's Spaceborne Radar and Advanced Tactical Radar programs. The software was developed by personnel at Vanderbilt University under the sponsorship of the RADC Post-Doctoral Program. This effort fits into the RADC Technology Plan under TPO-RIC, Surveillance Sensor Technology, and under TPO R4B, Surveillance ECCM. Bunald a. Hildelinand DONALD A. HILDEBRAND Project Engineer # TABLE OF CONTENTS | | Pa | ge | |---------|---|----------------| | | | | | Chapter | | | | I. | INTRODUCTION | 1 | | | 1.1 Fresnel-Kirchhoff Diffraction Integral | 1 | | | 1.3 Parametric Antenna Analysis Software (PAAS) General Description | 5
7 | | | 1.5 Deterministic Phase Functions | 9
9
10 | | | 1.8 Special Antenna Options | 10 | | ĮI. | APERTURE TO FAR-FIELD MAPPING, FFT2DX | 13 | | | 2.1 The Relationship Between Terminal Current and the Radiated Field | 13 | | | 2.2 Discrete Fourier Transform | 15 | | III. | THE ARRAY LOADER, PLARY | 20 | | | 3.1 Introduction | 20
21
24 | | | 3.4 Beam Steering and Phase Quantization | 51
57 | | | 3.6 Bessel Phase Error | 62
62 | | IV. | RANDOM PHASE ERRORS, RNDERR | 70 | | 11 | ADDITION MODIFICATION STIMOD | 70 | | | | Page | |-----------|-------------------------------------|------| | VI. | CONCLUSION | 87 | | REFERENCE | S | 89 | | APPENDICE | S | | | 1. | Figure/Computer Run Cross Reference | 91 | | 2. | Taylor Weighting Function Tables | 107 | | 3. | Bayliss Weighting Function Tables | 131 | # LIST OF FIGURES | Figu | re | Pa | ıge | |------|--|----|-----| | 1. | Geometry of scalar diffraction field | • | 2 | | 2. | Block diagram of PAAS modules | • | 8 | | 3. | A representative antenna element in freespace | • | 14 | | 4. | Planar grid of discrete radiators and angles to observation point, $P(r,\theta,\phi)$ | | 16 | | 5. | Far-field of 40 x 40 rectangular aperture | • | 22 | | 6. | Far-field of circular aperture w/radius = 32 | • | 23 | | 7 | Cosine aperture current distribution w/radius = 32 · · · · · · · · · · · · · · · · · · | • | 27 | | 8. | Far-field of cosine distribution | • | 28 | | 9. | Far-field of cosine distribution (Plotted using RTI4) | • | 29 | | 10. | Blackman aperture current distribution | | 31 | | 11. | Far-field of Blackman distribution | | 32 | | 12. | Kaiser aperture current distribution (Kaiser variable equal to 2) | • | 34 | | 13. | Far-field of Kaiser distribution (Kaiser variable equal to 2) | • | 35 | | 14. | Kaiser aperture current distribution (Kaiser variable equal to 8) | | 36 | | 15. | Far-field of Kaiser distribution (Kaiser variable equal to 8) | • | 37 | | 16. | Triangular aperture current distribution | • | 38 | | 17. | Far-field of triangular distribution | • | 39 | | 18. | 20 dB Taylor aperture current distribution with N = 10 | | 42 | | Figur | re | Pa | ge | |-------|--|----|----| | 19. | Far-field of 20 dB Taylor distribution with \emptyset = 10 | • | 43 | | 20. | Bessel aperture current distribution | • | 45 | | 21. | Far-field of Bessel distribution | • | 46 | | 22. | Cubic aperture current distribution | • | 48 | | 23. | Far-field of cubic distribution | • | 49 | | 24. | 20 dB Bayliss aperture current distribution with \overline{N} = 10 | • | 52 | | 25. | Far-field of 20 dB anyliss distribution with \overline{N} = 10 | • | 53 | | 25. | Projection of points on the $\sin \theta$ plane onto the unit hemisphere | | 55 | | 27. | Fau-field of aniform distribution with orthogonal beam steering angles (32.0°, 15.0°), n = 20 | • | 56 | | 28. | Far-field of uniform distribution with orthogonal beam steering engles (22.00, 15.00), n = 3 | • | 58 | | 29. | complete visible region in far-field of 70 dB Taylor distribution with N = 15 and orthogonal beam steering angles (22.0°, 15.0°), n = 3 | • | 59 | | 30. | Far-field of uniform distribution with 90.0^{0} of quadratic phase error at the edge of the aperture in the x-direction (40 x 40 rectangular aperture) | • | 61 | | 31. | Far-field of uniform distribution with 90.00 of Bessel: phase error at the center of the aperture (circular aperture w/radius = 32) | • | 63 | | 32. | 20 dB statistically thinned Taylor aperture current distribution with \overline{N} = 10 | • | 66 | | 33. | Far-field of statistically thinned Taylor distribution with \overline{N} = 10 | • | 67 | | 34. | Far-field of 30 dB statistically thinned Taylor distribution with \overline{N} = 3, radius = 45, 780 active elements | • | 69 | | 35. | Far-field of 20 dB Taylor distribution with \overline{N} = 10, and uniform random phase error distribution with a mean of 0.00 and a width of 45.00 | • | 72 | | r 1gu | re | Page | |-------|---|------| | 36. | Far-field of 70 dB Taylor distribution with \overline{N} = 15 and radius = 32 | . 72 | | 37. | Far-field of 70 dB Taylor distribution with \overline{N} = 15, radius = 32, and a uniform random phase error distribution with a mean of 0.0° and a width of 45.0° | . 74 | | 38. | Far-field of 70 dB Taylor Distribution with \overline{N} = 15, radius = 64, and a uniform random phase error distribution with a mean of 0.0° and width of 45.0° | . 76 | | 39. | Far-field of 70 dB Taylor distribution with \overline{N} = 15, radius = 32, orthogonal beam steering angles (21.09°, 14.06°), and a uniform random phase error distribution with a mean of 0.0° and a width of 45.0° | . 77 | | 40. | Uniform aperture current distribution with a radius of 32 samples and a J-feed. Feed radius of 4 samples and EM transmission line width of 2 samples | . 79 | | 41. | Far-field of uniform distribution with J-feed shown in Figure 40 · · · · · · · · · · · · · · · · · · | . 82 | | 42. | Uniform aperture current distribution in shape of J-feed that was removed from the distribution in Figure 40 · · · · · · · · · · · · · · · · · · | . 83 | | 43. | Far-field of uniform distribution in shape of J-feed shown in Figure 42 | . 84 | | 44. | Far-field of triangular distribution with J-feed | . 85 | ### CHAPTER I #### INTRODUCTION # 1.1 Fresnel-Kirchhoff Diffraction Integral Following Skolnik's work, the Fresnel-Kirchhoff scalar diffraction integral expressed in Equation 1.1 defines the relationship between a radiating source and the E-field distribution in space caused by that source (1). $$F(P) = \frac{1}{4\pi} \int_{\text{area}} G(\xi, \eta) \exp\{-jkr\} \left[(jk + \frac{1}{r}) \cos(\eta, r) + jk \cos(\eta, s) \right] \frac{1}{r} d\xi d\eta \qquad (1.1)$$ where: F(P) = The scalar field to a point P(x,y,z) $G(\xi,r)$ = The aperture excitation function (n,r) = The angle between the normal to the aperture face and the "r" direction. (n,s) = The angle between the normal to the aperture face and the phase illumination across the aperture. r = Distance from the point P(x,y,z) to the incremental element area $d\xi d\eta$ $k = 2 \pi/\lambda$ The relationship between these parameters is illustrated in Figure 1. A better understanding and a derivation of this integral may be seen in Marion and Silver (2,3). Silver and Skolnik both stress the heuristic nature of the Kirchhoff integral. Skolnik quotes from Barakat, "The theoreticians believe in the Kirchhoff theory because Figure 1: Geometry of scalar diffraction field. they hold it to be an experimental fact, while the experimentalists think it to be a mathematical theorem (4)." The integral, even though it lacks mathematical rigor however, does characterize the complex E-field distribution of a radiating source and is used as the basic definition of the radiation pattern throughout this work. There are three "regions" of interest which are characterized by special approximations to the diffraction integral. The first two regions in radiated space are the near-field and the Fresnel region. All of the approximations used for these also apply to the third region, the far-field, which is the subject of this paper. Skolnik has shown that the Kirchhoff integral is simplified to the integral shown in Equation 1.2 for the
far-field approximations. $$F(P) = \frac{1}{\lambda R} \exp\{-jkR\} \begin{cases} G(\xi, \eta) \exp\{jk\sin\theta(\xi\cos\Psi + \eta\sin\Psi)d\xi d\eta \} \end{cases}$$ (1.2) where: R = The distance from the origin to the point P(x,y,z)k = $2 \pi/\lambda$ ξ,η = Incremental coordinates in the x-y plane θ = Angle of elevation Ψ = Angle of azimuth For a rectangular aperture with dimensions a x b and uniform amplitude and phase excitation the integral is separable and gives (assuming $G(\xi,\eta)=1$) Equation 1.3. $$\frac{JE_{0}}{\lambda R} \exp\{-jkR\} = \begin{cases} a/2 \\ -a/2 \end{cases} \exp(jk\xi\sin\theta\cos\Psi)d\xi \cdot \int_{-a/2}^{b/2} \exp(jk\eta\sin\theta\sin\Psi)d\eta - b/2$$ (1.3) Integrating Equation 1.3 results in Equation 1.4. $$F(\theta,\psi) = \frac{\sin\{(\pi a/\lambda)\sin\theta\cos\Psi\}}{(\pi a/\lambda)\sin\theta\cos\Psi} \cdot \frac{\sin\{(\pi b/\lambda)\sin\theta\sin\Psi\}}{(\pi b/\lambda)\sin\theta\sin\Psi}$$ (1.4) The terms outside the integral in Equation 1.3 have been dropped since they only have a scaling effect on $F(\theta,\Psi)$. It can be seen that Equation 1.4 is the product of two (sin x)/x functions which characterizes the far-field radiation effects of a rectangular aperture. For the evaluation of a circular aperture a change of variables to polar coordinates and appropriate substitution in Equation 1.2 gives the circularly symmetric equivalent of Equation 1.3 $$F(u) = 2\pi a^2 \int_0^1 G(r) J_0(ur) r dr,$$ (1.5) where $u = \sin\theta$, "a" is the radius of the aperture, and J_0 is the Bessel function of the first kind and order zero. For G(r) = 1 the far-field becomes $$F(u) = 2\pi a^2 \frac{J_1(u)}{u}.$$ (1.6) # 1.2 Fourier Transform Representation The integral representation of the far-field radiation pattern of a continuous aperture excitation given in Equation 1.2 is in general very difficult to evaluate. In the case of the rectangular aperture the relationship between the aperture excitation and the far-field radiation pattern can be shown to be the product of two Fourier Transforms. For the ψ = 0 plane and with a substitution of $u = \pi a(\sin\theta)/\lambda$ and $x = (2/a)\xi$ into Equation 1.3 the far-field radiation pattern becomes $$F(u) = \int_{-1}^{1} G(x)e^{jux}dx. \qquad (1.7)$$ This equation is a finite Fourier transform of the illumination function. For most continuous aperture excitations, however, the integral in Equation 1.2 is not so easily evaluated. To show that the far-field radiation pattern of a circular aperture is the Fourier transform of the aperture excitation requires a knowledge of the relationships between Hankel and Fourier transforms. Other aperture excitations and shapes become completely intractable. In Chapter II a discussion of the relationship between discrete planar excitations and their corresponding far-field radiation patterns is presented. It is shown that for all discrete planar excitations with equally spaced radiators, the far-field pattern is a 2 dimensional DFT of the aperture excitation. # 1.3 Parametric Antenna Analysis Software (PAAS) General Description The PAAS modules presented in this report consist of a set of Fortran modules used to load and transform a desired antenna design. The modules are broken down into three groups: 1) loading modules, 2) support modules, and 3) transform module. All of the software was developed for use on a Honeywell 6000 series computer using the time-sharing GCOS operating system (5). The aperture loading software includes: - 1) PLARY The initial aperture loader. PLARY includes many weighting and deterministic phase functions and has provisions for both amplitude and space tapered arrays of rectangular, circular, and elliptical shape. - 2) RNDERR Modifies a previously generated aperture by adding random phase errors of specified distribution (uniform or Gaussian), mean, and standard deviation. - 3) FILMOD Modifies a previously generated aperture by "punching holes" and/or changing individual antenna element values according to user specified instructions. # The support software includes: - 1) TBLS A program to generate numerical tables of various weighting functions. The user provides radius (or length), type, and other appropriate weighting parameters. The Program also generates tables to compare to data generated by the probability density estimator program PDFESTR. - 2) PDFESTR A program used to generate the probability density histogram of statistically loaded or space tapered apertures. - 3) RTI4(6) A symbolic display module which converts relative magnitude into letters of the alphabet, numerals, or punctuation symbols and arranges them into a matrix which is printed on the time-sharing terminal. The program allows the user to vary the reference magnitude and the magnitude increment between symbols so that a very large dynamic range may be displayed. - 4) PLTDVR PLTDVR formats and transfers data to a recording (6) device in a form that is used in producing a pseudo-3D representation on a 4014 Tektronix graphics display terminal. The Fortran batch program used for mapping the antenna aperture excitation into the far-field radiation pattern is FFT2DX. The program selects an aperture distribution and performs a two-dimensional Fourier transform on the input array to generate the corresponding far-field. In summary, PAAS is a group of modules which allow the designer to model an antenna of arbitrary characteristics. In the following chapters the capabilities of PAAS are illustrated. The block diagram in Figure 2 depicts how the various PAAS modules fit together. The user interacts with all of the time-sharing system (TSS) modules (except PLTDVR) through a standard time sharing terminal. The data that is formatted and transmitted by PLTDVR must be recorded by the user on a data storage device. The recording and all the plots were made using the Dedicated User Interface Subsystem (DUIS) (6). From the block diagram it can be seen how one would progress through an antenna simulation. Details of the modules, how to use them, documentation, etc. are presented in the appendices. # 1.4 Weighting Functions Weighting functions are used to modify the effects of the Gibbs phenomenon which occur as a result of transforming a truncated sequence (7). The ratio of the sidelobe amplitude to the mainlobe amplitude is decreased at the expense of broadening the main beam when amplitude weighting is used. Some weighting functions, notably the Taylor, produce extremely good results (8-10). The Taylor may be used to approach the ideal weighting distribution, Dolph-Chebyschev, to any degree of accuracy that the designer wishes (11). Figure 2: Block diagram of PAAS modules The residence of re Some of the weighting functions are for specific aperture shapes. There are eight weighting functions implemented in the array loader PLARY. The element weights for the rectangular and elliptical arrays are calculated as the product of two orthogonal weighting functions evaluated at each element with respect to the center of the array. The element weights for the circular arrays are evaluated using a circularly symmetric weighting function. #### 1.5 Deterministic Phase Functions The three deterministic phase functions which are included in the simulation are linear phase shift, quadratic phase error, and a Bessel phase error distribution (1,12,13). The linear phase shift is implemented for beam steering purposes. Quadratic phase error is introduced by bending in mechanical antenna structures. The Bessel phase error distribution results from machining errors in circular mechanical dish antennas (12). ### 1.6 Random Phase Errors In addition to the deterministic phase functions discussed above the program RNDERR allows the user to add random phase errors to the aperture current distribution. Phase errors of this nature have been discussed by many authors (13-19). Random phase errors are present in any antenna system. They arise as a result of a number of physical causes such as uneven transmission line length, non planar apertures and variable transmitter outputs. Sidelobe deterioration and loss of main beam gain are the major effects of random phase errors. # 1.7 Statistical or Space Tapered Arrays In realistic design situations the antenna designer must be concerned with space tapered or thinned arrays because of the economics of building large phased array antennas (20). Statistical tapering is achieved by loading the antenna array elements according to a probability density function. The density function is determined by the normalized values of the design weighting function. The elements that are active radiate unit power and those that are not active are replaced by dummy elements. This leads to an antenna system with fewer active radiators and all radiating at one power level. These antenna designs are useful economically but can create difficulties because of sidelobe level deterioration. ## 1.8 Special Antenna Options The illumination function of most mechanical dish antennas are blocked by feeds, supports, or other similar structures which cause deterioration of the far-field radiation pattern. This can be simulated using the special module, FILMOD. FILMOD is used to "punch holes" and/or change individual element values in the input aperture distribution. Another problem in phased array antennas is the possibility of losing individual elements due to random failures. Worse still, power to entire subarrays may be lost. This causes a hole in the aperture distribution but is usually rather irregularly shaped so that its effect is minimized. This can be modeled by going through the aperture array and zeroing out the individual elements that would be lost in a transmitter failure. # 1.9 Prospectus The set of PAAS modules presented here are used to model a wide variety of antenna situations. The far-field radiation patterns are computed using the module FFT2DX. The designer is given many
options in both phased-array antennas and also in mechanical dish antennas. In situations where a closed form solution of a particular antenna design is not known (which is realistically the case for all antenna designs) the designer may use the analysis package described in this thesis to investigate the far-field radiation pattern. The designer may also run sensitivity tests of the antenna to various effects such as random phase errors, subarray or element loss, and beam steering. The work of the designer is greatly aided, and he may now see in both a quantitative as well as in a qualitative way the results of a particular antenna design. In the text that follows, Chapter II through V, illustrative material is presented that indicates to the reader what situations the simulation is capable of modeling. Chapter II discusses in detail the relationship between a discrete planar aperture excitation and the far-field radiation pattern caused by the excitation. Chapter III discusses the planar array loader and all the capabilities included in the loader. Chapter IV discussed the far-field effects of random phase errors. Chapter V discusses the simulation of aperture radiation blockage and its effect on the far-field radiation pattern. The appendices are included to instruct the reader on how to use the simulation. The computer software, documentation, and flow charts for all the simulation programs are presented. The documentation includes a discussion of the meaning of the input variables, theory of operation for the program, and the subroutines required by the program. Detailed listings are presented so that the user may better understand the logic of the program and/or modify the program to suit his particular needs. ## CHAPTER II # APERTURE TO FAR-FIELD MAPPING, FFT2DX # 2.1 The Relationship Between Terminal Current and the Radiated Field An aperture is defined herein as an array or grid of radiating elements. The elements are assumed to be isotropic radiators and are equally spaced along the vertical and the horizontal axes. From M. T. Ma the E-field produced by a radiator is defined by the following equation (21). $$E_{i}(\theta, \psi) = \beta(\theta, \psi) I_{i} \exp\{j(2\pi/\lambda) r_{i} \cos \psi_{i} + \alpha_{i}\}$$ (2.1a) $$= \beta(\theta, \psi) I_{i} e^{jC} i \qquad (2.1b)$$ where $$C_{i} = (2\pi/\lambda)r_{i}\cos\psi_{i} + \alpha_{i} \qquad (2.2)$$ I_{i} = The magnitude of the current in the radiating element α_i = The phase component of the radiating element ψ_i = The angle between the radiating element and the observation point r_i = Radius from the origin to the radiating element $\beta(\theta,\psi)$ = Function relating terminal current in the elemental radiator to the E-field at some radius, R, for the angles θ and ψ . The relationship between these parameters may be seen more clearly in Figure 3. The E-field and thus the power field are related to Figure 3. A representative antenna element in the freespace. the radiator current by a constant, $\beta(\theta,\psi)$, at each point in the farfield. As a result of this it is now appropriate to describe the aperture element excitation in terms of a complex aperture current distribution. The E-field distribution, $E_{\mathbf{j}}(\theta,\psi)$, in the far-field caused by each radiator has been shown to be related to the terminal current, $\beta(\theta,\psi) \cdot I_{\mathbf{j}}$, times a constant, $\exp(\mathbf{j}C_{\mathbf{j}})$. The E-field distribution of all the radiators, $E(\theta,\psi)$, is the sum of the E-fields from each radiator (9). Thus, $$E(\theta,\psi) = \sum_{i} E_{i}(\theta,\psi) \qquad (2.3)$$ $$= \sum_{i} \beta(\theta, \psi) I_{i} e^{jC} i \qquad (2.4)$$ $$= \underbrace{\beta(\theta, \psi) I_{\text{max}} \Sigma W_{i} e^{jC} i}_{\text{elemental array radiator factor pattern}}$$ (2.5) where: $I_i = I_{max}W_i$ and $0 \le W_i \le 1$. When the radiation pattern is expressed in the form of Equation 2.5 it is seen to be the product of two terms. The first is a function of the element characteristics, has the units of volts, and is called the elemental radiator pattern. The second term is a dimensionless quantity that is a function of the array shape and configuration. This term is called the array factor. Since isotropic radiators have been assumed, $\beta(0,\psi)$ is a constant and thus the elemental radiator pattern is a constant. The radiator pattern that is computed then is equal to the array factor times a scaling constant. To evaluate the radiation pattern of an array of identical non-isotropic radiators the computed far-field must be multiplied by the function $\beta_{\eta}(0,\psi)$ where n denotes the particular type of non-isotropic radiator used and $\beta_{\eta}(0,\psi)$ is the function relating terminal current to far-field voltage for the selected elemental type. # 2.2 Discrete Fourier Transform Now that the relationship between current and the radiation from a particular element has been established, the current to each element may be used to express the aperture excitation. In Figure 4, a grid of equally spaced elements is shown along with the angles to the far-field observation point, $P(r,0,\phi)$. The E-field radiation in the far-field is given by (22) $$E(\theta,\phi) = \beta(\theta,\phi) \sum_{m=-N_X}^{N_X} \sum_{n=-N_y}^{N_y} I_{mn} \exp\{jk\sin\theta(nd_x\cos\phi+nd_y\sin\phi)\}$$ (2.6) Figure 4. Planar grid of discrete radiators and angles to observation point, $P(r,\theta,\phi)$. This equation may be rewritten as $$E(\theta,\phi) = \beta(\theta,\phi) \sum_{m=-N_{\chi}}^{N_{\chi}} \exp(jk\sin\theta nd_{\chi}\cos\phi) .$$ $$\sum_{N=-N_{\chi}}^{N_{\chi}} I_{mn} \exp(jk\sin\theta nd_{\chi}\sin\phi) \qquad (2.7)$$ Equation 2.7 is in a form that has isolated the x and y components. The parameters θ and ϕ are however still involved in both summations. It would be convenient if the two summations could be carried out in rectangular coordinates rather than polar coordinates. The reasoning for this becomes evident later. From Figure 6 the relationship between the angles θ and φ and the angle α_x and α_v is seen to be $$\cos \alpha_y = \sin \theta \sin \phi$$ (2.8a) $$\cos\alpha_{x} = \sin\theta\cos\phi$$ (2.8b) These are the direction cosines of the vector with azimuth angle, ϕ , and elevation angle, θ . Any point in the far-field can be represented by a pair of direction cosines. Now if the direction cosines are substituted into Equation 2.7 it becomes $$\hat{E}(\cos\alpha_{x},\cos\alpha_{y}) = B(\cos\alpha_{x},\cos\alpha_{y}) \sum_{m=-N_{x}}^{N_{x}} \exp(jkmd_{x}\cos\alpha_{x}) \cdot \frac{N_{y}}{n=-N_{y}} I_{m}(n)\exp(jknd_{y}\cos\alpha_{y})$$ (2.9) The polar function $E(\theta,\phi)$ has been changed to a rectangular function, $\hat{E}(\cos\alpha_\chi,\cos\alpha_y)$. The relationship from the points in space to the aperture plane are now determined by the direction cosine coordinates rather than the angles of azimuth and elevation. The current distribution, $I_m(n)$, still represents the original grid of elements. The subscripts have been changed however to represent m rows of elements with n elements in each row or a total of n columns. This is done so that the evaluation of \hat{E} may be separated into a summation on the rows, then a summation on the columns. By letting $$\frac{r_1}{2Ny} = \frac{d_y \cos \alpha_y}{\lambda} \tag{2.10a}$$ and $$\frac{r_2}{2N_X} = \frac{d_X \cos \alpha_X}{\lambda}$$ Equation 2.9 becomes $$\widetilde{E}(r_{2},r_{1}) = \beta(r_{2},r_{1}) \sum_{m=-N_{X}}^{N_{X}} \exp(j\frac{2\pi}{2N_{X}}r_{2}^{m}) \cdot \frac{N}{\sum_{n=-N_{Y}}^{N} I_{m}(n) \exp(j\frac{2\pi}{2N_{Y}}r_{1}^{n})}$$ (2.11) Because of the periodicity of the input function, the limits of the summations may be changed as in the following equation. $$\widetilde{E}(r_2,r_1) = \beta(r_2,r_1) \sum_{m=0}^{N} \sum_{x=0}^{X} e^{j\frac{2\pi}{N_{xx}}} r_2 \sum_{n=0}^{M} \sum_{y=0}^{N} I_m(n) e^{j\frac{2\pi}{N_{yy}}} r_1^n$$ (2.12) where: $$N_{XX} = 2N_{X}$$ $$N_{yy} = 2N_y$$ Comparing Equation 2.12 with the Equation for the inverse discrete Fourier transform (IDFT), $$x(r) = \sum_{k=0}^{N-1} x(k)e^{j\frac{2\pi}{N}kr}$$ (2.13) it is seen that Equation 2.12 is a two-dimensional IDFT. The far-field of an input aperture can thus be calculated using the FFT algorithm. The structure of the summations now allows the m rows of the current distribution to be transformed and then the n columns. Using this technique any aperture current distribution can be transformed by doing an FFT across each row and then down each column. This technique is completely general. The program FFT2DX maps the aperture current distribution into the far-field radiation pattern. The program computes the radiation pattern by doing two sets FFTs. First the rows of the input aperture are transformed and stored onto an intermediate file. The program then transforms the columns of the intermediate data. Only those parts of the far-field requested are stored onto the user designated permanent disk file. The resulting data is the complex E-field pattern of the input planar aperture current distribution. In the following chapters the input aperture current distributions are discussed and their corresponding far-field radiation patterns are shown. In this way the effects of each aperture feature on the far-field radiation are presented and can be studied along with the specific aperture distribution. ## CHAPTER III # THE ARRAY LOADER, PLARY #### 3.1 Introduction The array loader, PLARY, contains the necessary optional features to load an antenna array. The features included are 1) shape and size, 2) weighting, 3) beam steering (including quantization phase error), 4) Bessel phase error, and 5) statistical loading or space tapering. In the following sections equations and examples for the various features are given. For each feature the far-field is also shown and discussed. Where possible,
comparisons to known far-field solutions are made to show the validity of the simulation. Using the aperture to far-field mapping discussed in Chapter II it is shown that the simulation gives expected results for the more complicated antenna apertures. In fact, the work in Chapter II has shown that all the far-field results from the simulation are exact for the given antenna aperture current distribution. Unless noted otherwise, the aperture plots are current magnitude representations of 64 x 64 element arrays. This allows a radius of 32.0 for circular apertures. The rectangular apertures can, of course, fill the aperture field. In Chapter II it was shown that the far-field radiation pattern of the aperture current distribution is in general a two-dimensional Fourier transform of the aperture distribution. Unless noted otherwise, the dimensions of the computed far-field are 256 x 256 points. The far-field plots shown are linear energy magnitude plots with dimensions of 64×64 points and are located in the middle of the far-field. The plots thus represent 1/16 of the total area of the calculated far-field. ## 3.2 Shape and Size In Chapter I it is shown in Equation 1.4 that a rectangular aperture produces a far-field radiation pattern that is the product of two (sin P)/P functions. Figure 5 illustrates the antenna pattern for an array that has 40 elements on a side and a uniform current distribution. The peak sidelobe level is 13 dB down from the main lobe as is expected. It can also be seen in the figure that the two cardinal planes contain the specified (sin P)/P functions and the other points in the far-field are determined by the product of these two orthogonal functions. In Figure 5 the vertical axis is magnitude. The x and y axes are direction cosines defined by $$y = \cos \alpha_y = \sin \theta \sin \phi$$ and $x = \cos \alpha_x = \sin \theta \cos \phi$ where θ is the elevation angle and ϕ is the azimuth angle. These units for each axis are direction cosines and apply throughout the thesis in the far-field radiation plots. Equation 1.6 defines the far-field radiation pattern of a circular aperture. The expected peak sidelobe level is 17 dB down from the main lobe. Figure 6 illustrates the far-field antenna pattern of a circular aperture with a radius of 32 elements and a uniform current distribution. Figure 5. Far-field of 40×40 rectangular aperture. Far-field of circular aperture w/radius = 32. Figure 6. The peak sidelobe of this plot is 17 dB as expected. The character of the sidelobe structure follows the predicted Bessel function exactly. Thus, rectangular apertures produce far-field radiation patterns that are characterized by the product of two orthogonal (sin P)/P functions. Circular apertures produce far-field radiation patterns that are characterized by a circularly symmetric Bessel function of the first kind and first order. These characteristics are still evident as the underlying nature of the far-field patterns produced by the modified rectangular or circular apertures in the sections to follow. The size or number of radiating elements, N, of an antenna determine several antenna radiation characteristics. The beamwidth is effected by the number of elements in the array. As the number of elements increases along one axis the beamwidth decreases along the same axis. Thus if a square aperture were elongated in the x-direction, the beamwidth in that direction would decrease. The average sidelobe level caused by random errors also decreases as the number of radiating elements increases. A more detailed discussion of random errors is presented in Chapter IV. ## 3.3 Weighting Functions Weighting functions are used to help improve the main lobe to sidelobe amplitude ratio of the antenna pattern. The pattern shown in Figure 6 is that of a rectangularly weighted circular aperture. This means that there is a uniform current distribution to all the radiating elements in the aperture grid. The "weighting" produces a rather narrow beam but has sidelobes that are only -17 dB with respect to the main lobe peak. This result is a manifestation of the Gibbs phenomenon which describes the effects of transforming a truncated infinite sequence (7). If the sequence is tapered rather than simply truncated, a compromise is made and the effects of the Gibbs phenomenon are modified. The peak sidelobes are lowered but the narrow beam must be sacrificed for a broader one. There are many types of amplitude tapers or weightings. The weighting functions implemented in the array loader, PLARY, are - 1) cosine on a pedestal to a power, - 2) Blackman, - 3) Kaiser, - 4) Bartlett or triangular, - 5) Taylor, - 6) Bessel, - 7) cubic, and - 8) Bayliss. These functions are discussed below, and examples of both the weighting function and the far-field are shown. A program to calculate the numerical value of these weighting functions is presented in Volume II. Cosine on a pedestal to a power represents a large group of weighting functions. Both the Hanning and the Hamming weighting functions are special cases of this weighting function. The general equation for this group of functions is (23) $$w(x) = P + (1-P) \cdot \cos^{N}(x\pi/2R)$$ (3.1) where: P = Height of the pedestal x = Independent variable R = Radius or half-span of the weighting function N = Power of the cosine function A common weighting is one half cycle of a cosine function (P = 0.0)with the zero crossings at the edge of the aperture (23). This weighting gives 26 dB sidelobes. An example of the weighting function is shown in Figure 7 while the corresponding far-field is shown in Figure 8. It is not possible to determine the sidelobe level of the far-field from the 3D-plot in Figure 8, but using another representation, RTI4, the sidelobe level may be accurately determined. An example of this representation is seen in Figure 9 when the spacing between letters is 2 dB. The peak of the far-field gain is 62 dB and is represented by an "A" on the plot. The first sidelobe is 26 dB below the main lobe and is represented by an "N" on the plot. The peak and the first two sidelobes are indicated in Figure 9 by the outlined areas. Using this representation the sidelobe level of the far-field can be determined within the accuracy of the letter spacing. The sidelobe levels given throughout the rest of this text were determined using plots of the type shown in Figure 9. Most of the plots used for illustration however are the type shown in Figures 7 and 8 because of their overall qualitative information content. Figure 7. Cosine aperture current distribution w/radius = 32. Figure 8. Far-field of cosine distribution. Something of the first of the second of Figure 9. Far-field of cosine distribution (Plotted using RTI4) The Blackman function tapers very gently at the edge of the aperture and as a result produces very low sidelobes (13). The weighting function is shown in Figure 10 while its transform is shown in Figure 11. The sidelobes are 58 dB down in Figure 11. The sacrifice for low sidelobes is a broadening of the main beam. In fact the 3 dB beamwidth is about twice the beamwidth of the same size array with rectangular weighting, as is in Figure 6. The Blackman weighting function is a variation of the cosine on a pedestal. It is the difference of two cosine on a pedestal functions plus a constant. The equation defining the Blackman is (23) $$w(X) = 0.42 - 0.5 \cdot \cos\{(X/R+1) \cdot \pi\} + 0.08 \cdot \cos^2\{(X/R+1) \cdot \pi\}$$ (3.2) where: R =The radius or half span of the weighting function X =Independent variable The Kaiser weighting function is unique among the simpler weighting functions because it allows the designer a choice in compromising between main lobe width and sidelobe level (23). The equation for the Kaiser weighting is $$w(X) = \frac{I_0^{\{\frac{K}{R}\sqrt{R^2 - X^2}\}}}{I_0(K)}$$ (3.3) R = The radius or half-span of the weighting function X = Independent variable Figure 10. Blackman aperture current distribution. Figure 11. Far-field of Blackman distribution. The range for the trade-off variable is $2 \le K \le 8$. Within these limits a wide range of choice is available. If the choice of K is close to 2, then a very narrow main lobe results at the sacrifice of higher sidelobes. An example of the weighting and its far-field are shown in Figure 12 and 13 respectively for a Kaiser variable equal to 2. If a Kaiser variable closer to 8 is chosen, the results are very low sidelobes at the sacrifice of a wider main lobe. For a Kaiser variable equal to 8 the aperture and the far-field are seen in Figures 14 and 15 respectively. The sidelobe level for the far-field in Figure 13 is 22 dB as compared to a 58 dB level in Figure 15. It should also be noted that the main lobe of the far-field in Figure 13 is 3.0° compared to the main lobe of Figure 15 which has a main lobe width of 5.0° . The Bartlett or triangular window is perhaps the simplest of the weighting functions. Its equation is (23) $$w(x) = 1 - x/R$$ (3.4) where: R = The radius or half-span of the weighting functionand x = The independent variable. The sidelobe level of this weighting function is 32 dB down (24). An example of the weighting function is shown in Figure 16 while the farfield is shown in Figure 17. The sidelobes are indeed down by 32 dB but the main beam is about one and a half times as wide as for a uniform distribution. Here again the design trade-off is between sidelobe level and main lobe width. The Taylor weighting distribution is perhaps the most sophisticated Figure 12. Kaiser aperture current distribution (Kaiser variable equal to 2). of the Continuence Contin Y Figure 13. Far-field of Kaiser distribution (Kaiser variable equal to 2). Figure 14. Kaiser aperture current distribution (Kaiser variable equal to 8). Far-field of Kaiser distribution (Kaiser variable equal to 8) Figure 15. Figure 16. Triangular aperture current distribution.
Figure 17. Far-field of triangular distribution. Biological Strategic Company of the weighting function available to the antenna designer (8-10). It allows the designer to approach the ideal Dolph-Chebyschev weighting function, the "ideal" criterion being the best main lobe width for a specified sidelobe level. The Taylor approaches this to any degree of accuracy that the designer may wish. The set of equations for the Taylor weighting for a circular aperture are given below (9,10). $$w(P) = \frac{2}{\pi^2} \sum_{m=0}^{\overline{N}-1} \frac{J_o(\mu_m P) F(\mu_m, A, \overline{N})}{\{J_o(\pi \mu_m)\}^2}$$ (3.5a) where: $$P = \pi x/R \tag{3.5b}$$ X = Independent Variable R = Radius of the weighting function $$F(\mu_{m}, A, \overline{N}) = \begin{cases} 1 & , m = 0 \\ -J_{0}(\pi\mu_{m}) \frac{\overline{N-1}}{\overline{1}} \left\{1 - \frac{\mu_{m}^{2}}{\sigma^{2} A^{2} + (n-\frac{1}{2})^{2}}\right\}, & (3.5c) \\ \frac{\overline{N-1}}{\overline{N-1}} & \left\{1 - (\frac{\mu_{m}}{\mu_{n}})^{2}\right\}, & m = 1, 2, ..., \overline{N} \\ 0 & , m = \overline{N} + 1, ... \end{cases}$$ $$A = \frac{\cosh^{-1}\eta}{\pi} \tag{3.5d}$$ $$\eta = antilog (DB/20.0)$$ (3.5e) DB = Design sidelobe amplitude in dB $$0 = \frac{11}{\sqrt{\Lambda^2 + (N - 1)^2}}$$ (3.5f) AND CONTRACTOR OF THE PROPERTY μ_n = The zeros of the Bessel function $$J_1(m_n) = 0, n = 1, 2, ...$$ N \approx The number of equal amplitude sidelobes desired. The Taylor weighting function may be made to approach the ideal Dolph-Chebyschev function. This is achieved by choosing targer values of N. The value of N also determines the number of equal height sidelobes in the far-field. The sidelobe level decreases monotonically after the Nth sidelobe. For a given sidelobe level and N the main beam associated with the Taylor distribution is the smallest of any weighting function for the given sidelobe level. The articles by Taylor and Hansen give more insight and discussion on this weighting function (8-10). An example of the Taylor weighting for a 20 dB design and N equal to 10 is shown in Figure 18. The corresponding far-field is shown in Figure 19. Notice the equal sidelobes in Figure 19 compared to monotonically decreasing sidelobes of the uniform distribution of Figure 3. This is the characteristic feature of the Taylor weighting. The sidelobes remain equal for the required design number which in this case is 10. The Bessel weighting function is produced by the feed system of some mechanical dish antennas (12). The weighting is such that the Figure 18. 20 dB Taylor aperture current distribution with $\overline{R} = \omega$. Control of the contro Figure 19. Far-field of 20 dB Taylor distribution with \overline{N} = 10. ¥ first zero crossing of the Bessel function is at the edge of the aperture. An example of an ideally positioned Bessel weighting is shown in Figure 20. If the zero crossing is inside the aperture, then the current distribution appears to be on a pedestal. If the zero crossing is outside the aperture, then the current distribution may have negative amplitude at the edge. The far-field of the aperture distribution in Figure 20 is shown in Figure 21. The equation for the Bessel weighting is $$w(X) = B_{\text{max}} J_O(Xr_S)$$ (3.6) where: X = Independent Variable B_{max} = The maximum weighting amplitude r_s = The radius scaling constant The sidelobe level of the Bessel weighting is 28 dB down from the main lobe which has a beamwidth of about 3.4° . The cubic weighting produces a difference pattern in the far-field which is used in monopulse tracking radar (12). The equation for the cubic weighting is $$w(x) = C_{max}x(x+R)(x-R)$$ (3.7) external of chickens of the standard and the where: X = Independent Variable R = The half-span of the weighting function C_{max} = Amplitude scaling constant This weighting may only be used with rectangular apertures and produces Figure 20. Bessel aperture current distribution. " Seich de Seine der Seine en der seine der Seine State der Seine Seine Seine Seine der Seine Seine Seine Seine Figure 21. Far-field of Bessel distribution. only 13 dB sidelobes. The weighting and its far-field are shown in Figure 22 and Figure 23, respectively. The Bayliss weighting function is the first derivative of the Taylor weighting function and produces a difference pattern which is similar to the Taylor in many respects (25). The design criterion however is slightly different than the Taylor. The criterion is that for a given sidelobe level the slope at $\theta=0$ in the far-field must be a maximum. This again produces equal sidelobes just as did the Taylor. A design sidelobe level and a value for \overline{N} are chosen to produce \overline{N} equal sidelobes in the far-field. The equations defining the Bayliss weighting are given below (25). $$w(p) = \cos(\psi) \sum_{m=0}^{\overline{N}-1} B(m) J_{1}(\pi \mu_{m})$$ (3.8a) where: $$P = \pi x/R \tag{3.8b}$$ x = Independent variable R = Radius of the weighting function ψ = The azimuth angle in the aperture plane u_{m} = zeros of the Bessel function $$J_1'(\mu_m \pi) = 0, m = 0, 1, ...$$ $$B(m) = \begin{cases} -jC2\mu_{m}^{2} \frac{\overline{N-1}}{\prod_{k=1}^{N-1} \{1 - (\frac{\mu_{m}}{\sigma z_{n}})^{2}\}} \\ \frac{\overline{N-1}}{\prod_{k=0}^{N-1} \{1 - (\frac{\mu_{m}}{\mu_{k}})^{2}\}} \\ k = 0 \\ k \neq 0 \end{cases}, m = \overline{N}, \overline{N} + 1, ...$$ (3.8c) Figure 22. Cubic aperture current distribution. on the survey of the second Figure 23. Far-field of cubic distribution. Horizonton Lecronomia Missis mente de distribution de de descriptions de description de la company de description descripti $$Z_{n} = \begin{cases} 0, & n = 0 \\ \pm \xi_{n}, & n = 1, \dots, 4 \\ \pm (A^{2} + n^{2})^{\frac{1}{2}}, & n = 5, \dots \end{cases}$$ (3.8d) $$\xi_1 = 0.9858302 + 0.0333885 \cdot DB + 0.000140 \cdot DB^2 - 0.0000019 \cdot DB^3 + 0.00000001 \cdot DB^4$$ (3.8e) $$\xi_2 = 2.00337487 + 0.1141548 \cdot DB + 0.0004159 \cdot DB^2 - 0.00000373 \cdot DB^3$$ $$0.00000001 \cdot DB^4$$ (3.8f) $$\xi_3 = 3.00636321 + 0.00683394 \cdot DE + 0.00029281 \cdot DB^2 - 0.00000161 \cdot DB^3$$ (3.8g) $$\xi_4 = 4.00518423 + 0.00501795 \cdot DB + 0.00021735 \cdot DB^2 - 0.00000088 \cdot DB^3$$ (3.8h) $$A = \frac{\cosh^{-1} \eta}{\pi}$$ (3.8i) $$\eta = \operatorname{antilog}(DB/20.0) \tag{3.8j}$$ $$\sigma = \frac{\mu_{\overline{N}}}{Z_{\overline{N}}}$$ (3.8k) $1/C = ((p_0 \sigma \pi)^2 - 1)J_1(\sigma p_0 \pi)$. $$\frac{\overline{N}-1}{\prod_{1}^{N}\{1-(\frac{p_{0}}{z_{n}})^{2}\}}$$ $$\frac{n=1}{\overline{N}-1}$$ $$\prod_{1}^{N}\{1-(\frac{\sigma p_{0}}{\mu_{n}})^{2}\}$$ $$n=0$$ (3.8m) $$P_0 = 0.4797212 + 0.01456692 \cdot DB - 0.00018739 \cdot DB^2 + 0.00000218 \cdot DB^3 - 0.00000001 \cdot DB^4$$ (3.8n) The aperture current distribution for a Bayliss with a 20 dB design and \overline{N} equal to 10 is shown in Figure 24. The corresponding far-field is shown in Figure 25. Notice that similar to the Taylor the sidelobes are approximately equal and that the main beams are quite narrow. ## 3.4 Beam Steering and Phase Quantization Planar arrays are steerable in two dimensions, azimuth and elevation. For representation in $\sin\theta$ space however, direction cosines may be used to determine the position of the beam (1). Given the two direction cosines of a steering angle, the distance from the origin to the beam in the aperture plane is determined. The distance is also the sine of the elevation angle θ . The azimuth angle θ , can be calculated from the direction cosines using the following equation: $$\emptyset = \tan^{-1} \frac{\cos \alpha_{y}}{\cos \alpha_{x}}$$ (3.9) where $\cos \alpha_{\chi}$ = direction cosine in the x-direction $\cos \alpha_{y}$ = direction cosine in the y-direction The angle of elevation is defined in terms of the direction cosines as $$\theta = \sin^{-1} (\cos^2 \alpha_x + \cos^2 \alpha_y)^{\frac{1}{2}}$$ (3.10) Instead of using direction cosines directly in the simulation, two orthogonal angles measured from the vertical axis in the x-y and y-z plane define the position of the beam. If the two direction cosines of these angles are taken to be coordinates of a Cartesian coordinate system in the x-y plane, sometimes called the T-plane, the point defined by $(\cos \alpha_{\rm X}, \cos \alpha_{\rm Y})$ defines the location of the beam (26). The Figure 24. 20 dB Bayliss aperture current distribution with \overline{N} = 10. The first of the contraction Figure 25. Far-field of 20 dB Bayliss distribution with \overline{N} = 10. Arbennanden in inner naturannanundi (oppiden mister) kasasindaksindaksindaksindaksindaksing Kasasindaksindaksi projection of the 3 dB beamwidth in the T-plane to a unit hemisphere above the plane defines the 3 dB beamwidth in the far-field. Figure 26 illustrates the projection of the beam in θ space to the beam in θ space. An example of an array steered to 22.0° in the y-z plane and 15.0° in the x-z plane is shown in Figure 27. The aperture has a uniform distribution and is the same size as the aperture in Figure 6. Notice that the shape of the beam and the sidelobes have not changed as a result of beam steering. This however is an illusion caused by representation in sin θ space (1). The real half-power beamwidth is the apparent beamwidth projected onto a unit hemisphere above the far-field plot. This gives a beamwidth that is larger than appears in the plot. The scanned beamwidth as a function of the broadside beamwidth and scan angle is given by the expression $$\theta_{B}(\text{scanned}) = \frac{\theta_{B}(\text{broadside})}{\cos \theta_{S}}$$ (3.11) See Figure 26 for an illustration of this effect. Beam steering is implemented by applying an incremental phase shift to the elements of the array. This creates a shift in the phase plane of the aperture current distribution. Often digital phase shifters are used to make the incremental phase shift and they are controlled by a
limited number of bits from an antenna control computer. The number of controlling bits determines the accuracy of the phase shifters in steering the beam. Since the maximum possible phase shift is 360° , the available phase shifts are in steps of HENNING THE THE PROPERTY OF TH Figure 26. Projection of points on the sin θ plane onto the unit hemisphere. Far-field of uniform distribution with orthogonal beam steering angles (32.00, 15.00), n=20. Figure 27. Militaria de la companio de la compa 360/2ⁿ where n is the number of control bits. In the example discussed above the number of control bits is very large (n = 20) and gives extremely fine phase resolution. As a result of this steering accuracy the effects of phase quantization are not evident. In Figure 28, however, the number of control bits is equal to 3. This figure illustrates one of the effects of phase quantization error. The most obvious effect is the raising of the sidelobe level. Other effects that are not as obvious are the loss in main beam gain and the appearance of quantization lobes outside the range of the plot in Figure 28 (1). The quantization lobes may be seen in Figure 29 which is a 70 dB Taylor design ($\overline{N} = 15$). The quantization lobes are introduced in the far-field as a result of the added periodic phase error caused by the mismatch in phase shifting ability and required phase shift. The peak sidelobes caused by quantization can be quite high and can cause a considerable degree of degradation in the farfield. The original design in Figure 29 is 70 dB and the peak sidelobe caused by quantization is only 18 dB down. The extremely low sidelobes are picked to illustrate the point, but in all designs the problem can arise. ## 3.5 Quadratic Phase Error Quadratic phase error is a phase error that is proportional to the square of the distance from the origin and it occurs naturally in some antenna situations. It occurs in flared horn antennas and in lens type or reflector antennas when the feed is defocused along the nanderbunden sie der ichen anderd William der Geberach and Dezer fer in der geber der Geberach der der der der The second secon Far-field of uniform distribution with orthogonal beam steering angles (22.0 $^{\rm o}$, 15.0 $^{\rm o}$), n = 3. Figure 28. ţ, Complete visible region in far-field of 70 dB Taylor distribution with N = 15 and orthogonal beam steering angles (22.00, 15.00), n = 3. Figure 29. Andrew States of the second axis of symmetry (24). The effect of quadratic phase errors is also seen when the radiation pattern of an antenna is measured at a finite distance from the antenna. This is a result of the fact that the measurements are really being taken in the Fresnel region and not in the far-field. The approximations that are valid for the far-field are not all valid in the Fresnel region. One of the invalid approximations is that the quadratic phase term ignored for the far-field approximation may not be neglected in the Fresnel region. For the Fresnel region the variations of r in the phase term exp(-jkr) of Eq. 1.1 are approximated by a linear term and a quadratic term as follows (1). $$r \approx z + \frac{(x+\xi)^2 + (y+\eta)^2}{2z}$$ (3.12) For the far-field approximation, all the terms above the first order in Eq. 3.12 are neglected. This approximation may not be made in the Fresnel region. Thus, if a measurement of the antenna pattern is not made at a very great distance, the quadratic phase character of the Fresnel region shows up. An example of the far-field of an antenna that has 90.0° of quadratic phase error at the edge of the aperture in the y-z plane is shown in Figure 30. The radiation pattern checks with the data that Jasik presented in the Antenna Engineering Handbook (24). The main beam and the first sidelobes in Figure 30 are no longer separated by deep nulls as in the antenna far-field pattern without the phase error in Figure 5. Both antennas are square apertures with Far-field of uniform distribution with $90.0^{\rm O}$ of quadratic phase error at the edge of the aperture in the x-direction (40 x 40 rectangular aperture). Figure 30. the existence of the time with considering the second of the estimation of the content of the second dimensions of 40×40 elements and uniform aperture current distributions. The effects of quadratic phase errors become apparent in light of this comparison. #### 3.6 Bessel Phase Error In addition to the Bessel amplitude weighting that is a result of mechanical dish feed systems, Bessel phase errors may also arise. The two characteristics are independent and they may or may not occur simultaneously (12). The Bessel phase error has a peak at the center of the array and decreases to zero at the edge of the aperture. The nature of the variation with radius is a Bessel function. In some cases the structure of the feed and/or the antenna cause the edge of the aperture to lie either inside or outside the zero crossing of the Bessel function. If the edge of the aperture is inside the zero crossing, the phase errors appear to be on a pedestal much like the cosine on a pedestal weighting function. If the edge of the aperture is outside of the zero crossing of the Bessel function, the phase becomes negative for the remainder of the aperture assuming a small overshoot at the edge. The far-field pattern of an aperture with $^{\circ}$ 90.0 0 peak phase error at the center of the array and with the zero crossings aligned exactly with the edge of the aperture is shown in Figure 31. # 3.7 Statistical Loading or Space Tapering The cost of building large phased array antennas is determined to Figure 31. Far-field of uniform distribution with 90.0⁰ of Bessel phase error at the center of the aperture (circular aperture w/radius = 32). The control has the control about the control of th a great extent by the number of radiating elements in the antenna. If the number of elements is reduced, then the cost of the installation is reduced accordingly. When the antenna pattern is modified by amplitude weighting, the number of elements is not changed but provisions for varying amounts of power to each element must be made. This means that either power is attenuated from a single transmitter or that various sizes of transmitters must be used. The price paid in the first case is a waste of power, in the second case, the price is a greatly complicated power generation and transmission system. If the required weighting to produce a good far-field were maintained with a reduction of radiating elements, the cost of the antenna could be maintained at a reasonable level. Additionally, if all of the elements were driven at a single power level, the complexity of the power generation and transmission system could be reduced. There would also be a much higher ratio of power transmitted to power radiated, thus, better efficiency and lower cost. These are all features of statistically loaded or space tapered arrays. The antenna array is loaded with only a few elements compared to the number required to completely fill the array. Each active element radiates unit power and the only losses are due to system losses, not to intentional attenuation. The elements are loaded into the array using the desired weighting function as a probability density function (20). Each element weight is compared to a random number generated from a uniform distribution. If the random number is less than or equal to the weight of the element, an active radiating element with unit power is placed at that location. Otherwise, the location will be loaded with a nonradiating dummy element. When the array is completely loaded, the radiating elements are distributed according to the density function determined by the value of the weights of the design weighting function. An example of such an array is shown in Figure 32. This is a plot in dB where the symbols represent different dB levels. The "G" represents an element radiating at unit power. The weighting function used is a Taylor weighting with 20 dB design sidelobes and a value of 10 for \overline{N} . The amplitude weighting for this design is snown in Figure 18 for comparison. Notice that where there is a large amplitude in the weighting, there is a high density of elements in the thinned array. The far-field of the amplitude tapered array is shown in Figure 19 while the far-field of the thinned array is shown in Figure 33. The sidelobe level of the amplitude tapered array is 20 dB. The sidelobe level of the thinned array is at 18 dB in one spot, but the level of most of the sidelobes are as designed, 20 dB. The major disadvantage of the thinning technique is not apparent in the 20 dB design. The mean sidelobe level of a purely random array is $$SLL_R = 10 \log (1/N)$$ (3.13) where N is the number of elements. In the design of the 20 db Taylor array there are 1025 active elements which give a mean sidelobe level of 30 dB. Since the design was for 20 dB, the random sidelobe level did not effect the design to any great extent. If, however, the Extra certises and the contraction of contracti Figure 32. 20 dB statistically thinned Taylor aperture current distribution with \tilde{N} = 10. Far-field of statistically thinned Taylor distribution with \overline{N} = 10. Figure 33. design had been for 35 dB sidelobes then the effects of the random sidelobe level would have caused severe deterioration in the far-field. Figure 34 illustrates the far-field of a 30 dB design. The aperture is loaded with 780 active elements which corresponds to a mean sidelobe level of 29 dB. Notice that the random sidelobe level dominates the far-field pattern except for the mainlobe. None of the design sidelobes are present. Far-field of 30 dB statistically thinned Taylor distribution with \overline{N} = 3, radius = 45, 780 active elements. Figure 34. A CONTRACTOR OF THE PROPERTY O # CHAPTER IV # RANDOM PHASE ERRORS, RNDERR All of the antenna design work that
has been discussed up to this point has reglected the effect of random phase errors. The aperture surface has been assumed to be perfectly smooth with no aberrations caused by structural errors or other surface defects. The transmission lines have been assumed to be all of perfect length so that every element radiates in perfect phase. In reality these assumptions are not accurate. The defects that arise in antenna systems can create severe degradation of the far-field. Some antenna designs that produce good radiation patterns only maintain this feature if random phase errors are ignored. The works of numerous authors are devoted to the effects of random phase errors on antenna patterns (13-19). Random phase errors cause a redistribution of the radiated energy. Thus, the main beam suffers a loss in gain while the sidelobes receive the difference in gain as an increase in sidelobe level (13,17). If the increase caused by the random errors is small compared to the design sidelobe level, then the effects of the errors are not evident in the far-field. If on the other hand the sidelobe level of the design is below the error sidelobe level, the effects of the random errors are quite severe. An example of how the effects differ may be seen by the following comparison. The far-field of Figure 35 is the result of exactly the same aperture excitation as that of Figure 19 except that random phase errors have been added. The phase errors are chosen from a uniform distribution with a mean of 0.0° and a width of 45.0° . (At X-band this corresponds to a surface tolerance of plus or minus 1.9 mm with respect to the mean.) The effects of the errors in this example are not evident as a result of the low level of the random sidelobes compared to the design sidelobes. Elliott gives the following three rules that characterize random phase errors in planar arrays (18). - The rise in the radiation sidelobes is more the lower the design sidelobe level, for a given antenna size and a given tolerance. - 2) The rise in the radiation sidelobes is less the larger the antenna, for a given design sidelobe level. - 3) The rise in sidelobe level due to random errors is independent of scan angle. The first rule is illustrated by designing a 70 dB antenna of the same size and tolerance as the antenna which produced the far-field pattern in Figure 35. Figure 36 illustrates the far-field of a 70 dB design without phase errors. (The peak has been cut off so that the low sidelobes may be seen). The sidelobes are quite small and the regions away from the mainlobe are very well behaved. In Figure 37 the far-field of the same aperture is shown. The only difference is that phase errors (with the same distribution as above) have been added. The sidelobe level has come up from 70 dB to a level of 38 dB. The increase in the sidelobe level in this case resulted from on the contraction of contra Far-field of 20 dB Taylor distribution with $\overline{\rm N}$ = 10, and uniform random phase error distribution with a mean of 0.00 and a width of 45.00. Figure 35. The second of th Far-field of 70 dB Taylor distribution with \overline{N} = 15 and radius = 32. Figure 36. enconsistant and Min Far-field of 70 dB Taylor distribution with N = 15, radius = 32, and a uniform random phase error distribution with a mean of $0.0^{\rm o}$ and a width of 45.0°. Figure 37. d sondettension and ender a three of this and the sond in the sold the sold the sold of th the fact that the random sidelobe level is much greater than the design sidelobe level. Elliott's second rule is illustrated by doubling the radius of the aperture in the last example to 64 elements. The resulting farfield radiation pattern is shown in Figure 38. The peak sidelobe level in this case is down to 42 dB compared to 38 dB for the smaller aperture. The improvement in sidelobe level however is made at the enormous cost of increasing the number of elements from 3200 to 12,800 or a 400% increase in the number of elements. Elliott's third rule states that the effects of random phase errors are independent of scan angle. To illustrate this the 70 dB array with random phase errors in Figure 35 is scanned to the orthogonal angles (21.09°, 14.06°). Figure 39 illustrates the farfield pattern results. (20 bits of phase accuracy are used so that the effects of phase quantization are not present). The sidelobe level is still 38 dB as in Figure 37 but the beam has been moved to a different location. Notice also that the shape of the surrounding sidelobes has not changed from the far-field in Figure 37. and the second of the second s Far-field of 70 dB Taylor distribution with N = 15, radius = 64, and a uniform random phase error distribution with a mean of $0.0^{\rm o}$ and width of $45.0^{\rm o}$. Figure 38. Far-field of 70 dB Taylor distribution with $\overline{\rm N}$ = 15, radius = 32, orthogonal beam steering angles (21.09°, i4.06°), and a uniform random phase error distribution with a mean of 0.0° and a width of 45.0°. Figure 39. #### CHAPTER V #### APERTURE MODIFICATION, FILMOD The apertures that have been discussed in the previous chapters have all been generated using closed form equations or random number generator schemes. In some antenna situations, notably mechanical dishes, there are obstructions in front of the illuminated aperture. These obstructions block the radiation of the illumination energy and cause deterioration of the far-field. Such obstructions include the feed and support on mechanically scanned dish antennas. As an example a circular dish with a J-feed is modeled. The modified aperture is shown in Figure 40. The illumination function is assumed to be a uniformly weighted illumination. The dish reference plane has a radius of 32 samples and the center feed has a radius of 4 samples. The EM transmission line and support are 2 samples wide and run from the center to the edge of the aperture. The plot was done using the symbolic matrix representation because the shape of the hole and the support are easier to see than in the 3D-plots. The far-field of the modified aperture illumination is shown in Figure 41. Notice the difference between this figure and the far-field of the same aperture without the J-feed presented previously in Figure 6. The effect of putting an obstruction in front of the aperture illumination is to remove the radiation from that part of the aperture. An analysis of this is now presented to evaluate the effect on both LONGALINANES SENTENDES EN SENTE Figure 40. Uniform aperture current distribution with a radius of 32 samples and a J-feed. Feed radius of 4 samples and EM transmission line width of 2 samples. the complex E-field pattern and the power pattern. Let X(k) be the original illumination function with no aperture blockage and 1 of Y(k) be an illumination function in the shape of the blocked radiation. From the work presented in Chapter II it is known that the far-field of any planar aperture illumination function is the inverse discrete Fourier transform of that illumination function. Thus, the far-field of X(k) and Y(k) are the following: $$x(n) = \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}$$ (5.1) $$y(n) = \sum_{k=0}^{N-1} Y(k)e^{j\frac{2\pi}{N}kn}$$ (5.2) The far-field of the difference of X(k) and Y(k), Z(k) is then $$Z(k) = X(k) - Y(k)$$ (5.3) where $$z(n) = \sum_{k=0}^{N-1} Z(k)e^{j\frac{2\pi}{N}kn}$$ (5.4) $$= \sum_{k=0}^{N-1} (X(k) - Y(k))e^{j\frac{2\pi}{N}kn}$$ (5.5) $$= \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn} - \sum_{k=0}^{N-1} Y(k) e^{j\frac{2\pi}{N}kn}$$ (5.6) $$z(n) = x(n) - y(n)$$ (5.7) Therefore, the E-field radiation of the difference of two illumination functions is the difference of the responsive radiation patterns. This result however only applies to the complex E-field radiation pattern. For the power far-field the magnitude squared of Z(n) must be found as $$|z(n)e^{j\phi_3(n)}|^2 = |x(n)e^{j\phi_1(n)} - y(n)e^{j\phi_2(n)}|^2$$ (5.8) $$= |x(n)|^{2} e^{j2\phi_{1}(n)} - 2|x(n)|e^{j\phi_{1}(n)}|y(n)|e^{j\phi_{2}(n)} + |y(n)|^{2} e^{j2\phi_{2}(n)}$$ (5.9) = $$\{|x(n)|^2 - 2|x(n)||y(n)| + |y(n)|^2\}$$ @ $\angle f(\phi_1(n), \phi_2(n))$ (5.10) It is clear now that the magnitude plots shown in Figure 43 and Figure 6 do not have a simple linear difference relationship between them. For the case of a uniform distribution with a J-feed, the far-field, x(n), is shown in Figure 41. The portion of the aperture illumination removed as a result of the J-feed, Y(k), is shown in Figure 42 and its corresponding far-field, y(n), is shown in Figure 43. Upon comparing the plots of Figure 43 and Figure 41 in light of the above derivation, it may now be seen why there is an increase in the sidelobe level along the x-axis of the plot in Figure 41 rather than a decrease. In Figure 44 a far-field plot is shown of an illumination with exactly the same parameter as in the above example except that the weighting has a triangular distribution. Notice that the triangular weighting has greatly decreased the sidelobe amplitude structure of the far-field although the effects of the J-feed under francourse in the commence of commen Figure 41. Far-field of uniform distribution with J-feed shown in Figure 40. Figure 42. Uniform aperture current distribution in shape of J-feed that was removed from the distribution in Figure 40. Figure 43. Far-field of uniform distribution in shape of J-feed shown in Figure 42. Figure 44. Far-field of triangular distribution with J-feed. obstruction are still quite evident. Other antenna effects can also be modeled using the module. These include transmitter failure, burned out radiators, or broken transmission lines and other radiation blocking phenomenon. Sensitivity experiments could be carried out by the designer to determine the best place to position the feeds and supports so that the far-field degradation is minimized. #### CHAPTER VI #### CONCLUSION With the set of PAAS modules presented herein, the antenna designer
may model a wide variety of antenna situations. Provision for shape, size, weighting, deterministic phase errors, random phase errors, beam steering, and statistical loading are included in PAAS. Through the use of PAAS the designer may study in detail the effects on the radiation pattern caused by various antenna aperture parameters. The radiation patterns are generated quickly and may be studied in two different forms, or the designer may wish to process the data in some other manner. The versatility and speed of the simulation presents no programming problem for the user since each antenna design is implemented using the same set of modules with the same question and answer sequences. There is no need for a new program when each new antenna design is encountered. For future research, features that are not included in this simulation but may prove to be useful are: - 1) Random amplitude errors, - 2) Random element position errors, - 3) Correlated phase errors and, - 4) The effects ' mutual coupling. Random amplitude errors arise because not all elements in the array have the same gain characteristics. Random element position errors occur because of the inaccuracy of the structural placement of the elements in the array grid. Random position errors can have disastrous effects on the radiation pattern of phased array antennas (18). Correlated phase errors are due to structural deformations. If a certain radiator is very high above the aperture plane, surrounding radiators will probably be above the aperture also. This results from the fact that the antenna surface is relatively smooth but non-planar. There are hills and valleys in which the radiators can be placed and thus areas of correlated error result. The radius of correlation of the phase error is very important (14). The effects of mutual coupling in phased array antennas is perhaps the most difficult problem to work with (26). It is also the most difficult to stimulate accurately. If in some relatively simple way the effects of mutual coupling could be added to PAAS, the far-field results would be more accurate and therefore of more use to the antenna designer. With these additions PAAS could become a very powerful tool for an extremely wide variety of antenna configurations. In minutes the designer can now gain information about the far-field radiation pattern which would take much longer using present antenna analysis techniques. #### REFERENCES - 1. Skolnik, Merrill I., <u>Radar Handbook</u>, Nev. York: McGraw-Hill Book Co., 1970, pp. 9.7-9.16, 11.15-11.21, 11.35-11.42. - 2. Marion, Jerry B., <u>Classical Electromagnetic Radiation</u>, New York: Academic Press, 1965, pp. 367-388. - 3. Silver, Samuel, "Microwave Aperture Antennas and Diffraction Theory," Journal of the Optical Society of America, Vol. 52, No. 2, (2/62), pp. 131-139. - 4. Barakat, R., "The Intensity Distribution and Total Illumination of Aberration-free Diffraction Images," in E. Wolf (ed.), Progress in Optics, Vol. 1, Inter-Science Publishers, Inc., New York, 1961, pp. 66-108. - 5. Hancock, Robert J., Cleveland, Fred H., Endo Atmospheric-Exo Atmospheric Radar Modeling, RADC-TR-76-186, Vol I, Part 1 A030555, Vol I, Part 2 A030496, Vol I, Part 3 A030504, Vol II, Vol III A030572, Vol IV, Part 2 A031439. - 6. Final technical report on Interactive Radar Simulator developed under RADC contract F30602-75-C-0063, RADC Job Order #65121104, Exploratory Development Program (62702F), to be published in July 1977. - 7. Rabiner, L. R., Gold, B., <u>Theory and Application of Digital</u> Signal Processing, Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1975, pp. 88-105. - 8. Taylor, T. T., "Design of Line-source Antennas for Narrow Beamwidth and Low Sidelobes," IRE Trans. on Antennas and Propagation, Vol. AP-3, pp. 16-28, (1/55). - 9. Taylor, T. T., "Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes," IRE Trans. on Antennas and Propagation, Vol. AP-8, pp. 17-22, (1/60). - 10. Hansen, R. C., "Tables of Taylor Distributions for Circular Aperture Antennas," IRE Trans. on Antennas and Propagation, Vol. AP-8, pp. 23-26, (1/60). - 11. Dolph, C. L., "A Current Distribution for Broadside Arrays which Optimizes the Relationship between Beamwidth and Side-lobe Level," Proc. IRE, Vol. 34, pp. 335-348, (6/46). - 12. Personal communication with RADC, 1977. - Steinberg, Bernard D., <u>Principles of Aperture and Array System Design</u>, New York: <u>John Wiley & Sons</u>, 1976, pp. 139-170. - 14. Ruze, J., "Antenna Tolerance Theory--A Review," Proc. IEEE, Vol. 54, No. 4, pp. 633-640, (4/66). - 15. Rondinelli, L. A., "Effects of Random Errors on the Performance of Antenna Arrays of Many Elements," IEEE Conv. Rec., 1959, P+.1, pp. 174-89. - 16. Kahrilas, Peter J., "Design of Électronic Scanning Radar Systems (ESRS)," Proc. IEEE, Vol. 56, No. 11, pp. 1763-1771, (11/68). - 17. Bracewell, R. N., "Tolerance Theory of Large Antennas," IRE Trans. on Antennas and Propagation, Vol. AP-9, No. 1, pp. 49-58, (1/61). - Elliott, Robert S., "Mechanical and Electrical Tolerances for Two-Dimensional Scanning Antenna Arrays," IRE Trans. on Antennas and Propagation, Vol. AP-6, No. 1, pp. 114-120, (1/58). - 19. Gilbert, E. N., Morgan, S. P., "Optimum Design of Directive Antenna Arrays Subject to Random Variations," Bell Sys. Tech. Journal, Vol. 34, pp. 637-663, (5/55). - 20. Skolnik, M. I., Sherman, J. W., OGG, Jr., F. C., "Statistically Designed Density-Tapered Arrays," IEEE Trans. on Antennas and Propagation, Vol. AP-12, pp. 408-417, (7/64). - 21. Ma, M. T., Theory and Application of Antenna Arrays, New York: John Wiley & Sons, 1974, pp. 2-3. - 22. Hansen, R. C., <u>Microwave Scanning Antennas</u>, Vol. 2, New York: Academic Press Inc., 1964. - 23. Oppenheim, A. V., Schafer, R. W., <u>Digital Signal Processing</u>, Englewood Cliffs, N. J., Prentice-Hall, Inc., 1975, pp. 243-244. - 24. Jasik, Henry, Antenna Engineering Handbook, New York: McGraw-Hill Book Co., 1961, pp. 2.30-2.36. - 25. Bayliss, E. T., "Design of Monopulse Antenna Difference Patterns with Low Sidelobes," Bell Sys. Tech. Journal, Vol. 47, pp. 623-650, (5/68). - 26. Amitay, N., Galindo, V., Wu, C. P., <u>Theory and Analysis of Phased Array Antennas</u>, New York: John Wiley & Sons, 1972. - 27. IBM flowchart template, (12-70), Form GX20-8020-1 U/M-010. #### APPENDIX 1 # FIGURE/COMPUTER RUN CROSS REFERENCE In this appendix, Table A1-1 is presented which provides a list of the input parameters that were used in generating the figures presented in the body of this report. Unless stated otherwise, all of the far-field radiation patterns were calculated using the following FFT2DX parameter values. N2-8 LRJ-LRK-4 LRJIN-LRKIN-6 LRJWID-LRKWID-4 Unless stated otherwise, the following H3DPL parameter values were used in producing all of the 3-D plots. IXFAC=15 IYFAC-11 LFLAC-0 TL-0.0 IPAD-4 IXST-500 IXRNC-2300 IYBOT-700 IYRNG=1500 ICFLG=0 The value used for TH in plotting the aperture distributions was approximately 3.0 times the peak value of the aperture distribution. Usually peak equals 1.0. The value used for TH in plotting the far-field patterns was approximately 1.5 times the peak value of the far-field magnitude. The programs called and pertinent paramèter values are now given in the following table for each of the PAAS jobs run to produce data presented in this report. In this table the figure numbers are the same as those assigned in the body of the report. # RAAS-TR-Appendix 1 16 JUN 77 Table Al-1 Figure/Computer Run Cross Reference Table | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM PARANETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|---|----------------------------| | 1 | 5 | PLARY | IAPTFL=3
NVIDTH=40
NHIGH=40
IVTFLG=0
NBITS=20
LRJ=LRK=4 | | | | | FFT2DX | - | 1600 | | 2 | 6 | PLARY | IAPTFL=1
XEDGE=32.0
XHOLE=0.0
IVTFLG=0
NBITS=20
LRJ=LRK=4 | | | | | FFT2DX | ••• | 3200 | | 3 | 7,8 | PLARY | IAPTFL=1 XEDGE=32.0 XHOLE=0.0 IVTFLG=1 VTRAD=32.0 VTPED=0.0 NVTPOW=1 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | ~ | 1300 | # PAAS-TR-Appendix 1 16 JUN 77 Table Al-1 Figure/ Computer Run Cross Reference Table | RUN
| FIG
| | PROGRAM PARAMETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------|--|----------------------------| | 4 | 10,11 | PLARY | IAPTFL=1 XEDGE=30.0 XHOLE=0.0 IWTFLG=2 WTRAD=30.0 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | ~ | 6 50 | | 5 | 12,13 | PLARY | IAPTFL=1 XEDGE=30.0 XHOLE=0.0 IWTFLG=3 WTRAD=30.0 WKASIR=2.0 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | - | 2000 | | 6 | 14,15 | PLARY | IAPTFL=1 XEDCE=30.0 XHOLE=0.0 IWTFLC=3 WTRAD=30.0 WXASIR=8.0 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | - | 650 | Table Al-1 Figure/Computer Run Cross Reference Table | | | | 10010 | | |----------|----------|--------------------|--|----------------------------| | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM
PARAMETER
VALUES | FAR-FIELD
PEAK
VALUE | | 7 | 18,17 | PLARY | IAPTFL=1 XEDGE=30.0 XHOLE=0.0 IWTFLG=4 WTRAD=30.0 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | - | 1000 | | 8 | 18,19 | PLARY | IAPTFL=1 KEDGE=32.0 KHOLE=0.0 IWTFLG=5 WTRAD=32.0 DB=20.0 NBAR=10 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | - | 650 | | 9 | 20,21 | FLARY | IAPTFL=1, KEDGE=30.0 KHOLE=0.0 IWTFLG=6 WTRAD=30.0 BESCAL=1.0 BESEDG=0.08 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | - | 1300 | # Table Al-1 Figure/Computer Run Cross Reference Table | RUN | FIG | | | FAR-FIELD | |-----|--------|--------|-------------|-----------| | # | # | CALLED | PARAMETER | PEAK | | | | | VALUES | VALUE | | 10 | 2.2,23 | PLARY | IAPTFL=3 | | | | | | NWIDTH-40 | | | | | | NHIGH=40 | | | | | | IVTFLG=7 | | | | | | ZJRAD=20.0 | | | | | | ZKRAD=20.0 | | | | | |
CUBK=1.0 | | | | | | NBITS=20 | | | | | | LRJ=LRK=4 | | | | | FFT2DX | <u> </u> | 800 | | 11 | 24,25 | PLARY | IAPTFL=1 | | | | | | XEDGE-32.0 | | | | | | XHOLE-0.0 | | | | | | IVTFLC=8 | | | | | | WTRAD=32.0 | | | | | | DB=20.0 | | | | | | NBAR-10 | | | | | | NBITS-20 | | | | | | LRJ=LRK=4 | | | | | FFT2DX | - | 250 | | 12 | 27 | PLARY | IAPTFL=1 | | | | | | XEDCE=32.0 | | | | | | XHOLE-0.0 | | | | | | IWTFLC-0 | | | | | | DELPHJ=22.0 | | | | | | DELPHK=15.0 | | | | | | NBITS=20 | | | | | | LRJ=LRK=4 | | | | | FFT2DX | - | 3200 | ## Table Al-1 Figure/Computer Run Cross Reference ## Table | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM PARAMETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|---|----------------------------| | 13 | 28 | PLARY | IAPTFL=1 KEDGE=32.0 KHOLE=0.0 IWTFLG=0 DELPHJ=22.0 DELPHK=15.0 NBITS=3 LRJ=LRK=4 | | | | | F'FT2DX | - | 3200 | | 14 | 29 | PLARY | IAPTFL=1 KEDGE=32.0 KHOLE=0.0 IWTFLG=5 WTRAD=32.0 DB=70.0 NBAR=15 DELPHJ=22.0 DELPHK=15.0 NBITS=3 LRJ=LRK=4 | | | | | FFT2DX | N2=7
LRJ=LRK=4
LRJIN=LRKIN=0
LRJWID=LRKWID=8 | 650 | ## Table Al-1 Figure/Computer Run Cross Reference ## Table | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM PARAMETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|--|----------------------------| | 15 | .30 | PLARY | IAPTFL-3 NWIDTH-40 NHICH-40 IWTFLC-0 PHERX-90.0 NBITS-20 LRJ-LRK-4 | | | | | FFT2DX | | 1600 | | 16 | 31 | PLARY | IAPTFL-1 KEDGE-30.0 KHOLE-0.0 IWTFLG-0 NBITS-20 BESERR-90.0 BSCAL-0.08 LRJ-LRK-4 | | | | | FFT2DX | - | 3200 | | 17 | 32,33 | PLARY | IAPTFL=1 XEDGE=32.0 XHOLE=0.0 IVTFLG=5 VTRAD=32.0 DB=20.0 NBAR=10 NBITS=20 XKK=1.0 MAD1=JRND=1 LRJ=LRK=4 | | | | | FFT2DX | | 900 | # Table A1-1 Figure/Computer Run Cross Reference Table | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM
PARAMETER
VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|--|----------------------------| | 18 | 34 | PLARY | IAPTFL=1 XEDGE=45.0 XHOLE=0.0 IWTFLG=5 WTRAD=45.0 DB=30.0 NBAR=3 NBITS=20 XKK=0.24 MAD1=JRND=1 LRJ=LRK=6 | | | | | FFT2DX | LRJ=LRK=6 | 750 | | 19 | 35 | PLARY | IAPTFL=1 XEDGE=32.0 XHOLE=0.0 IWTFLG=5 WTRAD=32.0 DB=20.0 NBAR=10 NBITS=20 LRJ=LRK=4 | | | | | RNDERR | NTYPE=1
MAD1=JRND=1
LRJ=LRK=4
UMEAN=1.0
UUEXT=45.0 | | | | | FFT2DX | - | 650 | Table Al-1 Figure/Computer Run Cross Reference Table | RUN
| FIG
| PROGRAMS
CALLED | PROCRAM
PARAMETER
VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|--|----------------------------| | 20 | 36 | PLARY | IAPTFL=1 KEDGE=32.0 KHOLE=0.0 IVTFLG=5 VTRAD=32.0 DB=70.0 NBAR=15 NBITS=20 LRJ=LRK=4 | | | | | FFT2DX | y 9ala | 6 5 Ø | NOTE: To produce Figure 36, the peak value, TH, is set to 100.0 and the data is clipped at 10.0 in the plotting program H3DPL. RNDERR NTYPE=1 MAD1-JRND-1 LRJ-LRK-4 UNEAN-0.0 UUEXT-45.0 ## Table A1-1 Figure/Computer Run Cross Reference Table | RUN
| FIG
| PROGRAMS
CALLED | PROGRAM
PARAMETER
VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|--------------------------------|----------------------------| | | | FFT2DX | • | 650 | NOTE: To produce Figure 37, use the same procedure as for Figure 36 in Run # 20. LRJ=LRK=8 | XHOLE=0.0
IWTFLC=5
WTRAD=64.0
DB=70.0
NBAR=15 | |---| | NBAR=15 | | NBITS=20 | | | RNDERR NTYPE=1 MAD1-JRND=1 LRJ-LRK=8 UMEAN=0.0 UUEXT=45.0 FFT2DX LRJ=LRK=8 2500 NOTE: To produce Figure 38, the peak value, TH, is set to 400.0 and the data is clipped at 40.0 in the plotting program H3DPL. ## Table A1-1 Figure/Computer Run Cross Reference Table | RUN
| | PROGRAM
CALLED | S PROCRAM PARAMETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----|-------------------|--|----------------------------| | 23 | 39 | PLARY | IAPTFL=1 XEDGE=32.0 XHOLE=0.0 IWTFLG=5 WTRAD=32.0 DB=70.0 NBAR=15 DELPHJ=21.09 DELPHK=14.06 NBITS=20 LRJ=LRK:4 | | | | | RNDERR | NTYPE-1
MAD1-JRND-1
LRJ-LRK-4
UMEAN-0.0
UUEXT-45.0 | | | | | FFT2DX | - | 650 | | | | | To produce Figure same procedure as 36 in Run # 20. | | | 24 | 41 | PLARY | IAPTFL-1 XEDGE=30.0 XHOLE=0.0 IWTFLG=0 NBITS=20 LRJ=LRK=4 | | # Table A1-1 Figure/Computer Run Cross Réferènce | RUN
| FIG
| PROGRAMS
CALLED | PROCRAM PARAMETER VALUES | FAR-FIELD
PEAK
VALUE | |----------|----------|--------------------|--|----------------------------| | | | FILMOD | LRJ=LRK=4 ICNTJ=ICNTK=32 XHOLE=3 Set the following elements to (0.0,0.0) Block 7: (1,16)-(16,16) Block 8: (1,16)-(16,16) Block 11: (1,1)-(16,1) Block 12: (1,1)-(16,1) | | | | | FFT2DX | | 3100 | | 25 | 43 | PLARY | IAPTFL=1 XEDGE=1.0 XHOLE=2.0 IWTFLG=0 NBITS=20 LRJ=LRK=4 | | | | | FILMOD | LRJ=LRK=4 Set the following elements to (1.0,0.0) Block 6: (12,16), (13,14)-(13,16), (14,13)-(14,16), (15,13)-(15,16), (16,12)-(16,16) | | ## Table Al-1 Figure/Computer Run Cross Reference Table | Block 7: (13,1)-(13,2), (14,1)-(14,3), (15,1)-(15,3), (16,1)-(16,16) Block 8: (16,1)-(16,15) Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: (1,1)-(1,15) | RUN
| FIC
| PROGRAMS
CALLED | PROGRAM
PARAMETER
VALUES | FAR-FIELD
PEAK
VALUE | |---|----------|----------|--------------------|--------------------------------|----------------------------| | (13,1)-(13,2), (14,1)-(14,3), (15,1)-(15,3), (16,1)-(16,16) Block 8: (16,1)-(16,15) Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | Block 7: | | | (14,1)-(14,3), (15,1)-(15,3), (16,1)-(16,16) Block 8: (16,1)-(16,15) Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | | | | (15,1)-(15,3),
(16,1)-(16.16)
Block 8:
(16,1)-(16,15)
Block 10:
(1,13)-(1,16),
(2,13)-(2,16),
(3,14)-(3,16),
(4,16)
Block 11:
(1,1)-(1,16),
(2,1)-(2,3),
(3,1)-(3,2),
(4,1)
Block 12: | | | | | | | (16,1)-(16,16) Block 8: (16,1)-(16,15) Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | • | | | Block 8: (16,1)-(16,15) Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | • | | | Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | | | | Block 10: (1,13)-(1,16), (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | ~ | | (16,1)-(16,15) | | | (2,13)-(2,16), (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | | | | (3,14)-(3,16), (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | (1,13)-(1,16), | | | (4,16) Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | (2,13)-(2,16), | | | Block 11: (1,1)-(1,16), (2,1)-(2,3), (3,1)-(3,2), (4,1) Block 12: | | | | (3,14)-(3,16), | | | (1,1)-(1,16),
(2,1)-(2,3),
(3,1)-(3,2),
(4,1)
Block 12: | | | | (4,16) | | | (2,1)-(2,3),
(3,1)-(3,2),
(4,1)
Block 12: | | | | Block 11: | | | (3,1)-(3,2),
(4,1)
Block 12: | | | | (1,1)-(1,16), | | | (4,1)
Block 12: | | | | (2,1)-(2,3), | | | Block 12: | | | | (3,1)-(3,2), | | | | | | | (4,1) | | | (1.1)~(1.15) | | | | Block 12: | | | `= f = r \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | (1,1)-(1,15) | | FFT2DX 100 NOTE: To produce Figure 43, the peak value, TH, used in the plotting program H3DPL should be 3100. 26 44 PLARY IAPTFL=1 XEDGE=30.0 XHOLE=0.0 IVTFLC=4 VTRAD=30.0 NBITS=20 LRJ=LRK-4 ### Table A1-1 Figure/Computer Run Cross Reference Table RUN FIG PROGRAMS PROCRAM FAR-FIELD # # CALLED PARAMETER PEAK VALUES VALUE FILMOD LRJ-LRK-4 ICNTJ-ICNTK-32 XHOLE=3 See Note FFT2DX - 800 NOTE: Use the same procedure for the zero elements as in Run # 24. #### APPENDIX 2 #### TAYLOR WEIGHTING FUNCTION TABLES In this appendix a table is presented of the Taylor weighting function for a circular antenna aperture. This table is similar to that published by Hansen 10 , but is more accurate and has greater range in the design side lobe level and \bar{N} . In this table the design side lobe level is shown as the parameter, DB. The parameter A is derived from DB by using the following expression: ## $A = 1/\pi \cosh^{-1}[10.0^{DB/20}]$ For each value of NBAR, the beam spread factor, SIGMA, and the associated sampled weighting function are tabulated. In this table 20 samples were taken across the radius of the aperture. The number of samples is user defined and can be changed to give either finer or more coarse sampling. In preparing this table the values of \bar{N} which were not allowable were omitted. The minimum allowable value of \bar{N}
is a function of the design side lobe level. IF=20 A= 0.95277244 | NBA | AR= | 3 | 4 | 5 | 6 | 7 | |--|--|--|--|--|--|--| | SIG | HA= | | | | | | | | 1.2104 | 0334 | 1.16918564 | 1.13979128 | 1.11859846 | 1.10279417 | | 0 | 0.3058 | 6821 | 0.24997965 | 0.27908092 | 0.22803256 | 0.26390182 | | 1 | 0.3039 | 9587 | 0.25145539 | 0.27499860 | 0.23230423 | 0.25689566 | | 2 | 0.2985 | 1499 | 0.25528986 | 0.26429914 | 0.24196823 | 0.24142572 | | 3 | 0,2878 | | 0.25985867 | 0.25092540 | 0.24980502 | 0.22905596 | | 4 | 0.2785 | | 0.26293043 | 0.23942150 | 0.24925486 | 0.22681846 | | 5 | 0.2654 | | 0.26225955 | 0.23283092 | 0.23904646 | 0.23099148 | | 6 | 0.2513 | | 0.25620375 | 0.23122267 | 0.22378464 | 0.23106187 | | 7 | 0.2373 | | 0.24421544 | 0.23153281 | 0.21158377 | 0.22024444 | | 8 | 0.2240 | | 0.22708495 | 0.22885999 | 0.20655472 | 0.20254156 | | 9 | 0.2122 | | 0.20687100 | 0.21873043 | 0.20689399 | 0.18912374 | | 10
11 | 0.2024 | | 0.18652707 | 0.19940814 | 0.20449357 | 0.18668586 | | 12 | 0.1897 | | 0.16930374
0.15806019 | 0.17325740 | 0:19039345 | 0.18863193 | | 13 | 0.1867 | | 0.15464030 | 0.12736859. | 0.16170B04
0.12583130 | 0.17866847
0.14590296 | | 14 | 0.1856 | | 0.15945525 | 0.12318067 | 0.09876968 | 0.09946395 | | 15 | 0.1859 | | 0.13743323 | 0.12318087 | 0.09776239 | 0.06888296 | | 16 | 0.1871 | | 0.18790927 | 0.16870329 | 0.13182583 | 0.08660317 | | 17 | 0.1887 | | 0.20577204 | 0.20954233 | 0.19541935 | 0.16355521 | | 18 | 0.1901 | | 0.22148614 | 0.24969899 | 0.26905656 | 0.27595986 | | 19 | 0.1912 | | 0.23211478 | 0.27867377 | 0.32706119 | 0.37486015 | | 20 | 0.1915 | | 0.23582888 | 0.28910934 | 0.34879742 | 0.41374269 | | | | | | | | | | | | | | | | | | NBA | R= : | 8 | 9 | 10 | 11 | 12, | | NBA
SIG | | 8 | 9 | 10 | 11 | 12, | | | | - | 9 | 10 | 11
1.06672445 | 12 _.
1.06131157 | | | HA= | 2086 | · | | | | | SIG
0
1 | HA=
1.0906 | 2086
5671 | 1.08098233 | 1.07317345 | 1.06672445 | 1.06131157 | | SIG | HA=
1.0906 | 2086
5671
6643 | 1.08098233 | 1.07317345 | 1.06672445 | 1.06131157 | | 0
1
2
3 | 0.2162
0.2238 | 2086
5671
6643
9304 | 1.08098233
0.25484495
0.24436474 | 1.07317345
0.20902105
0.22035731 | 1.06672445
0.24891050
0.23464618 | 1.06131157
0.20415076
0.21936695 | | 0
1
2
3 | MA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2311 | 2086
5671
6643
9304
0135
8257 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089 | 1.07317345
0.20902105
0.22035731
0.23557145 | 1.06672445
0.24891050
0.23464818
0.21718538 | 1.06131157
0.20415076
0.21936695
0.23224837 | | 0
1
2
3
4
5 | HA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2311 | 2086
5671
6643
9304
0135
8257
9223 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977 | | \$1G | HA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2311
0.2173
0.2130 | 2086
5671
6643
9304
0135
8257
9223
6872 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515 | | SIG
0
1
2
3
4
5
6
7 | HA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2311
0.2173
0.2130
0.2160 | 2086
5671
6643
9304
0135
8257
9223
6872
0606 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20835986 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592584 | | SIG
0
1
2
3
4
5
6
7
8 | HA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2311
0.2173
0.2130
0.2160
0.2122 | 2086
5671
6643
9304
0135
8257
9223
6872
0606
7930 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21428625
0.21869050
0.20895276
0.19191162 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20835986
0.20141830 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21288013
0.21240452
0.21901977
0.20928515
0.19592584
0.19916262 | | SIG
0
1
2
3
4
5
6
7
8
9 | HA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2173
0.2130
0.2130
0.2160
0.2122
0.1951 | 2086
5671
6643
9304
0135
8257
9223
6872
0606
7930
8807 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20875276
0.19191162
0.18866009 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20835986
0.20141830
0.18222165 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19916262
0.19189144 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.23173
0.2173
0.2130
0.2160
0.2122
0.1951
0.1759 | 2086
5671
6643
9304
0135
8257
9223
6872
0606
7930
8807
3030 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257
0.18584196 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20875276
0.19191162
0.18866009
0.19083628 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20835986
0.20141830
0.18222165
0.17851092 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19916262
0.19189144
0.17118966 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11 | MA=
1.0906
0.2162
0.2238
0.2377
0.2418
0.2173
0.2173
0.2130
0.2160
0.2122
0.1951
0.1759 | 2086
5671
6643
9304
0135
8257
9223
6872
0606
7930
8807
3030
2413 | 1.08098233
0.25484496
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257
0.18584196
0.16289780 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20835986
0.20141830
0.18222165
0.17851092
0.18069239 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19916262
0.19189144
0.17118966
0.17102989 | | 0
1
2
3
4
5
6
7
8
9
10
11
12 | HA= 1.0906 0.2162 0.2238. 0.2377 0.2418 0.2313 0.2173 0.2130 0.21600 0.1759: 0.1759: 0.1748 | 2086
5671
6643
9304
0135
8257
9223
6872
0606
7930
8807
3030
2413
9409 | 1.08098233
0.25484496
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257
0.18584196
0.16289780
0.15703127 |
1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.2089527
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592684
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024 | | SIG
0
1
3
4
5
6
7
8
9
10
11
12
13 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2311 0.2173 0.2130 0.2160 0.2122 0.1759 0.1759 0.1748 0.1647 | 2086
5671
6643
7304
0135
8257
79223
6872
07930
8807
3030
2413
7409
7822 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20112441
0.20158257
0.18584196
0.16289780
0.15703127
0.16449076 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.2089527
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537
0.14818525 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156
0.13419130 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592684
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024
0.13600895 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2311 0.2173 0.2130 0.2160 0.1759 0.1759 0.1748 0.1647 0.1207 | 2086
5671
6643
7304
0135
8257
7223
6872
06872
07930
8807
8807
8807
8807
8807
8807
8807
88 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20112441
0.20158257
0.18584196
0.16289780
0.15703127
0.16449076
0.14485297 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537
0.14818525
0.15477588 | 1.06672445
0.24891050
0.23464618
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20835986
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156
0.13419130
0.14590770 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592584
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024
0.13600895
0.12795436 | | SIG
0
1
3
4
5
6
7
8
9
10
11
12
13 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2311 0.2173 0.2130 0.2160 0.2122 0.1759 0.1759 0.1748 0.1647 | 2086
5671
6643
7304
0135
8257
7223
6872
0606
7930
8807
2413
7409
7822
1230
65907 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20112441
0.20158257
0.16289780
0.15703127
0.16449076
0.14485297
0.07783381 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537
0.14818525
0.15477588
0.10566747 | 1.06672445
0.24891050
0.23464618
0.21716538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156
0.13419130
0.14590770
0.13087671 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592584
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024
0.13600895
0.12795436
0.14161057 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2311 0.2173 0.2130 0.21600 0.2122 0.19510 0.1759 0.1702 0.1748 0.1647 0.1207 | 2086
5671
6643
7304
0135
8257
7223
6872
0606
7930
8807
7930
2413
7409
7622
1230
65907 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20112441
0.20158257
0.18584196
0.16289780
0.15703127
0.16449076
0.14485297 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537
0.14818525
0.15477588 | 1.06672445
0.24891050
0.23464818
0.21718538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156
0.13419130
0.14590770
0.13087671
0.02930181 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592584
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024
0.13600895
0.12795436
0.14181057
0.05708473 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2173 0.2130 0.21600 0.2122 0.19510 0.1748 0.1647 0.1207 0.06216 0.04530 | 2086
5671
6643
7304
0135
8257
7223
6872
0606
8807
02413
7409
7822
1230
65907
0559
4653 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257
0.16289780
0.15703127
0.16449076
0.14485297
0.07783381
0.01886615 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213
0.14837537
0.14818525
0.15477588
0.10566747
0.01336689 | 1.06672445
0.24891050
0.23464618
0.21716538
0.22186019
0.22686374
0.21371480
0.20425888
0.20425888
0.20141830
0.18222165
0.17851092
0.18069239
0.15741156
0.13419130
0.14590770
0.13087671 | 1.06131157
0.20415076
0.21936695
0.23224837
0.21885013
0.21240452
0.21901977
0.20928515
0.19592584
0.19916262
0.19189144
0.17118966
0.17102989
0.16892024
0.13600895
0.12795436
0.14161057 | | SIG
0123456789101121314151617 | HA= 1.0906 0.2162 0.2238 0.2377 0.2418 0.2311 0.2173 0.2130 0.21600 0.2122 0.1951 0.1759 0.1702 0.1748 0.1647 0.1207 0.06216 0.04536 0.11784 | 2086
5671
6643
7304
0135
8257
7223
6872
0606
8807
02413
7409
7822
1230
65907
0559
4653
2392 | 1.08098233
0.25484495
0.24436474
0.22624200
0.22116838
0.22804089
0.22790120
0.21392953
0.20117350
0.20112441
0.20158257
0.16289780
0.16289780
0.15703127
0.16449076
0.14485297
0.07783381
0.01886615
0.06489219 | 1.07317345
0.20902105
0.22035731
0.23557145
0.23067540
0.21608411
0.21428625
0.21869050
0.20895276
0.19191162
0.18866009
0.19083628
0.17367213
0.14818525
0.15477588
0.10566747
0.01336689
0.01264940 | 1.06672445 0.24891050 0.23464818 0.21718538 0.22186019 0.22686374 0.21371480 0.20425888 0.20141830 0.18222165 0.17851092 0.18069239 0.15741156 0.13419130 0.14590770 0.13087671 0.02830181 -0.03107530 | 1.06131157 0.20415076 0.21936695 0.23224837 0.21885013 0.21240452 0.21901977 0.20928515 0.19592584 0.19916262 0.19189144 0.17118966 0.17102989 0.16892024 0.13600895 0.12795436 0.14181057 0.05708473 -0.06005262 | ``` 17 NBAR= 13 15 16 14 SIGMA= 1.05670533 1.05273952 1.04928951 1.04358257 1.04626155 0.56614576 0.75676638 0.24486555 0.20325694 0.37816628 0.22668503 0.22013640 0.23265774 0.24696778 0.26172725 0.21330981 0.22596537 0,16866452 0.10683170 0.04422289 0.22421892 0.26154901 0.21165523 0.31535915 0.37006691 0.21773231 0.21686330 0.19831623 0.17954072 0.16079013 0.20572924 0.21269842 0.19145031 0.16755647 0.14323741 0.21098065 0.27581340 0.19979841 0.23589074 0.31664548 0.20238256 0.20412129 0.17563148 0.14547296 0.11498999 0.18770412 0.19263515 0.19227677 0.19066024 0.18889651 0.19144065 0.18013254 0.20237704 0.22834293 0.25520675 0.17990440 0.18452205 0.15444573 0.12119448 0.08723333 10 0.19432064 0.16014016 0.21011089 11 0.16383814 0.17876009 0.16632030 0.15362632 0.15985711 0.16691646 0.17875371 0.14941012 0.13502243 0.10681015 0.07741743 13 0.15886732 14 0.11605440 0.11846545 0:14376904 0.17206675 0.20111542 0.09281246 0.08128776 0.13544933 15 0.11825170 0.10503107 0.08952182 0.11545886 0.11202394 0.10227238 0.08956900 16 17 -0.07069809 -0.06298819 -0.02413897 0.02027964 0.06591204 0.03250783 -0.03464954 -0.10283615 -0.16525563 -0.22142868 18 0.55741953 19 0.55937057 0.53908285 0.51529508 0.49093849 0.88894370 0.98023796 1.07460319 1,17192569 NBAR= 18 19 20 SIGMA- 1.04119629 1.03905682 1.03712815 0.94188288 1,11701487 1.27985296 0.28993935 0.30277012 0.27618665 -0.01651625 -0.07394994 -0.12734355 0.42327314 0:47365397 0.52052333 0.12572434 0.14272703 0.10996716 0.11958918 0.09718643 0.07632455 0.35647842 0.39427469 0.42949153 0.08544301 0.05751850 0.03156598 0.18712020 0.18538737 0.18373062 0.28158351 0.30672704 0.33023635 0.05412359 0.02270402 -0.00658580 10 0.22543523 0.23991875 0.25336979 11 0.18870001 0.19837620 0.20755151 13 0.04839800 0.02061259 -0.00546396 0.22951855 0.25651802 0.28171043 14 15 0.07067804 0.06104927 0.05239538 0.07545026 0.06088994 0.04650524 17 0.11056553 0.15303328 0.19267627 -0.27139317 -0.31552226 -0.35432806 18 0.44629931 0.46774300 0.42659558 19 1.37509735 ``` 1.58910999 1.48078753 20 #### DB=25 A= 1,13655318 | NRA | R≃ 3 | .4 | 5 | 6 | 7 |
---|--|--|--|--|--| | SIG | MA= | | | | | | | 1.17918782 | 1.15249024 | 1:12958732 | 1.11176890 | 1.09792085 | | 0 | 0.36062255 | 0.33054933 | 0.33889988 | 0.30772878 | 0.32289020 | | i | 0.35907359 | 0.33044550 | 0.33614929 | 0.30929841 | 0.31854109 | | Ž | 0.35447861 | 0.32988389 | 0.32867501 | 0.31239770 | 0.30844343 | | 3 | 0.34699076 | 0.32818029 | 0.31846690 | 0.31328455 | 0.29876383 | | 4 | 0.33685705 | 0.32439913 | 0.30784759 | 0,30862220 | 0.29330997 | | 5 | 0.32440655 | 0.31760963 | 0.29843720 | 0.29777042 | 0.29021789 | | 6 | 0.31003506 | 0.30715461 | 0.29041848 | 0.28326686 | 0.28400631 | | 7 | 0.29418739 | 0.29286798 | 0.28243881 | 0.26910972 | 0.27111953 | | 3 | 0.27733824 | 0.27518846 | 0.27222255 | 0.25792604 | 0.25370035 | | 9 | 0.25997302 | 0.25514092 | 0.25766513 | 0.24892744 | 0.23776333 | | 10 | 0.24256969 | 0.23418727 | 0.23796572 | 0.23815827 | 0.22709839 | | 11 | 0.22558256 | 0.21397850 | 0.21431783 | 0.22112799 | 0.21856211 | | 12 | 0.20942872 | 0.19606255 | 0.18983667 | 0.19634432 | 0.20381426 | | 13 | 0.19447756 | 0.18161189 | 0.16869666 | 0.16752101 | 0.17712489 | | 14 | 0.18104346 | 0.17123052 | 0.15476863 | 0.14284038 | 0.14307378 | | 15 | 0.16938154 | 0.16468146 | 0.15025512 | 0.13131060 | 0.11695844 | | 16 | 0.15968606 | 0.16194799 | 0.15484168 | 0.13801651 | 0.11591563 | | 17 | 0.15209093 | 0.16141220 | 0.16569975 | 0.16086882 | 0.14631812 | | 18 | 0.14667172 | 0.16210812 | 0.17836398 | 0.19078971 | 0.19681018 | | 19 | 0.14344857 | 0.16299100 | 0.18818136 | 0.21546782 | 0.24298108 | | 20 | 0.14238952 | 0.16336252 | 0.19181916 | 0.22487692 | 0.26137662 | | | | | | | | | | | | | | | | NBA | R= 8 | 9 | 10 | 11 | 12 | | NBA
Sig | - | 9 | 10 | 11 | 12 | | | - | 9
1.07815662 | 10
1.07092035 | 11
1.06488679 | 12
1.05978467 | | SIG | MA=
1.08697589 | 1.07815662 | 1.07092035 | 1.06488679 | 1.05978467 | | SIG | MA=
1.08697589
0.29421158 | 1.07815662
C.31263462 | 1.07092035 | 1.06488679 | 1.05978467 | | SIG
0
1 | MA=
1.08697589
0.29421158
0.29771554 | 1.07815662
0.31263462
9.30636403 | 1.07092035
0.28555293
0.29118765 | 1.06488679
0.30569031
0.29731441 | 1.05978467
0.27958936
0.28743090 | | 51G
0
1
2 | MA=
1.08697589
0.29421158
0.29771554
0.30345276 | 1.07815662
0.31263462
9.30636403
0.29478396 | 1.07092035
0.28555293
0.29118765
0.27784190 | 1.06488679
0.30569031
0.29731441
0.28608160 | 1.05978467
0.27958936
0.28743090
0.29293240 | | 91G
0
1
2
3 | MA=
1.08697589
0.29421158
0.29771554
0.30345276
0.30271264 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133 | | 91G
0
1
2
3
4 | MA=
1.08697589
0.29421158
0.29771554
0.30345276
0.30271264
0.29297232 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472 | | 51G | MA=
1.08697589
0.29421158
0.29771554
0.30345276
0.30271264
0.29297232
0.28042435 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794
0.28401505 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203 | | 51G
0
1
2
3
4
5 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794
0.28401505
0.27058405 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928 | | SIG
0
1
2
3
4
5
6
7 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794
0.28401505
0.27058405
0.25689157 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260
0.25612400 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203 | | SIG
0
1
2
3
4
5
6
7
8 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794
0.28401505
0.27058405
0.25689157
0.24934473 | 1.07092035
0.28555293
0.29118765
0.27184190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.28497978 0.27309046 0.26228260 0.25612400 0.24725002 | 1.05978467
0.27958936
0.28243090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703 | | SIG
0123456789 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 | 1.07815662
C.31263462
9.30636403
0.29478396
0.28916072
0.28901505
0.27058405
0.27058405
0.25689157
0.24934473
0.24154638 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.280633446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.27309046 0.26228260 0.25612400 0.24725002 0.22897888 | 1.05978467 0.27958936 0.28743090 0.29293240 0.28293133 0.27569472 0.27474203 0.26392928 0.25026703 0.24503889 | | SIG
0
1
2
3
4
5
6
7
8 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 | 1.07815662
0.31263462
9.30636403
0.29478396
0.28916072
0.28897794
0.28401505
0.27058405
0.25689157
0.24934473 | 1.07092035
0.28555293
0.29118765
0.27184190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.28497978 0.27309046 0.26228260 0.25612400 0.24725002 | 1.05978467 0.27958936 0.28743090 0.29293240 0.28293133 0.27569472 0.27474203 0.26392928 0.25026703 0.24503889 0.23349866 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.27197545 0.25698671 0.23951162 0.22020368 | 1.07815662
0.31263462
9.30636403
0.29478396
0.289716072
0.2897794
0.28401505
0.27058405
0.27058405
0.24934473
0.24454638
0.22450280 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.22619127 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260
0.26228260
0.24725002
0.22897888
0.21863200
0.21127681
0.18980304 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27574203
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253 | | SIG
0
1
2
3
4
5
6
7
8
9
10 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 | 1.07815662
C.31263462
9.30636403
0.29478396
0.289716072
0.28977794
0.28401505
0.27058405
0.27058405
0.2450280
0.2450280
0.20302285 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27482384
0.25971935
0.24311463
0.23336757
0.22619127
0.20817161 |
1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27497978
0.26228260
0.26512400
0.26512400
0.24725002
0.22897888
0.21863200
0.21127681 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253
0.20537445
0.19561998
0.16880554 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.2698671 0.23951162 0.23951162 0.22020368 0.20768775 0.20068959 | 1.07815662
C.31263462
9.30636403
0.29478396
0.289716072
0.2897794
0.28401505
0.27058405
0.27058405
0.24934473
0.24154638
0.22450280
0.20302285
0.19040466 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27153311
0.257153311
0.257153311
0.257153311
0.257153311
0.23336757
0.22619127
0.20817161
0.18529214 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260
0.26228260
0.24725002
0.22897888
0.21863200
0.21127681
0.18980304 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.26392928
0.26392928
0.26392928
0.26392928
0.26392928
0.26392928
0.27490253
0.27490253
0.27561998 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 0.20068959 0.18613524 0.15377717 0.11357275 | 1.07815662
C.31263462
9.30636403
0.29478396
0.28916072
0.28977794
0.28401505
0.27058405
0.27058405
0.224934473
0.24154638
0.22450280
0.20302285
0.19040466
0.18516650 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.22619127
0.20817161
0.18529214
0.17585968
0.17066998
0.13623559 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260
0.25612400
0.24725002
0.22897888
0.21863200
0.21127681
0.18980304
0.16800014
0.16540304
0.14934271 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253
0.20537445
0.19561998
0.16880554
0.15538881
0.15480012 | | SIG
012345678910111213141516 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 0.20068959 0.18613524 0.15377717 0.11357275 0.09504416 | 1.07815662
C.31263462
9.30636403
0.29478396
0.28916072
C.28897794
0.28401505
0.27058405
0.27058405
0.25689157
C.24934473
0.24154638
0.2450280
0.20302285
0.19040466
0.18516650
0.16597781
0.12171469
0.08143882 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.22617161
0.18529214
0.17585968
0.17066998
0.13623559
0.07862362 | 1.06488679
0.30569031
0.29731441
0.28608160
0.28593519
0.28497978
0.27309046
0.26228260
0.25612400
0.24725002
0.22897888
0.21863200
0.21127681
0.18980304
0.16800014
0.16540304
0.14934271
0.08656425 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253
0.20537445
0.19561998
0.16880554
0.15538981
0.15480012
0.10187567 | | SIG
01234567891011121314151617 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 0.2068959 0.18613524 0.15377717 0.11357275 0.09504416 0.12383340 | 1.07815662
C.31263462
9.30636403
0.29478396
0.28916072
C.28297794
0.28401505
0.27058405
0.27058405
0.25689157
0.24154638
0.24154638
0.20302285
0.19040466
0.18516650
0.16597781
0.12171469
0.08143882
0.09686130 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.226317161
0.18529214
0.17585968
0.17066998
0.13623559
0.07862362
0.06971088 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.28497978 0.27309046 0.26228260 0.25612400 0.24725002 0.22897888 0.21863300 0.21127681 0.18980304 0.16800014 0.16540304 0.16540304 0.14934271 0.08656425 0.04669108 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253
0.20537445
0.19561998
0.16880554
0.15538981
0.15480012
0.10187567
0.03129880 | | SIG
012345678910112131415161718 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 0.2068959 0.18613524 0.15377717 0.11357275 0.09504416 0.12383340 0.19497312 | 1.07815662
0.31263462
9.30636403
0.29478396
0.2891977794
0.28401505
0.27058405
0.27058405
0.27058405
0.2450280
0.2450280
0.20302285
0.19040466
0.18516650
0.18516650
0.12171469
0.08143882
0.09686130
0.18471793 | 1.07092035
0.28555293
0.29118765
0.27184190
0.27242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.22619127
0.20817161
0.18529214
0.17585968
0.17066998
0.13623559
0.07862362
0.06971088
0.16629011 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.27309046 0.26228260 0.25612400 0.24725002 0.22897888 0.21863200 0.21127681 0.18980304 0.16504014 0.16504014 0.165425 | 1.05978467 0.27958936 0.28293130 0.28293130 0.28293130 0.27569472 0.27474203 0.26392928 0.25026703 0.24503889 0.23349866 0.21400253 0.20537445 0.19561998 0.165880554 0.15538881 0.155480012 0.10187567 0.03129880 0.10942581 | | SIG
01234567891011121314151617 | MA= 1.08697589 0.29421158 0.29771554 0.30345276 0.30271264 0.29297232 0.28042435 0.27197545 0.26661384 0.25698671 0.23951162 0.22020368 0.20768775 0.2068959 0.18613524 0.15377717 0.11357275 0.09504416 0.12383340 | 1.07815662
C.31263462
9.30636403
0.29478396
0.28916072
C.28297794
0.28401505
0.27058405
0.27058405
0.25689157
0.24154638
0.24154638
0.20302285
0.19040466
0.18516650
0.16597781
0.12171469
0.08143882
0.09686130 | 1.07092035
0.28555293
0.29118765
0.27784190
0.29242638
0.28063446
0.27482384
0.27153311
0.25971935
0.24311463
0.23336757
0.226317161
0.18529214
0.17585968
0.17066998
0.13623559
0.07862362
0.06971088 | 1.06488679 0.30569031 0.29731441 0.28608160 0.28593519 0.28497978 0.27309046 0.26228260 0.25612400 0.24725002 0.22897888 0.21863300 0.21127681 0.18980304 0.16800014 0.16540304 0.16540304 0.14934271 0.08656425 0.04669108 | 1.05978467
0.27958936
0.28743090
0.29293240
0.28293133
0.27569472
0.27474203
0.26392928
0.25026703
0.24503889
0.23349866
0.21400253
0.20537445
0.19561998
0.16880554
0.15538981
0.15480012
0.10187567
0.03129880 | SIGMA= 1.04284987 1.05541678 1.05163774 1.04833677 1.04542960 0.27667652 0.37217536 0.47444263 0.57816654 0.30078659 0.30579246 0.29022208 0.28550136 0.29145131 0.29845570 0.25464539 0.28125031 0.28718754 0.21988957 0.18482919 0.28466940 0.27669630 0.30330627 0.33202011 0.36128948 0.27751568 0.27602975 0.26493600 0.25387106 0.24291139 0.26928880 0.25674864 0.26634906 0.24290928 0.22892979 0.26384895 0.25681767 0.27597963 0.29721692 0.31900376 0.25275302 0.25310584 0.23670463 0.21955042 0.20229912 0.23794506 0.24000147 0.23774154 0.23628252 0.23918281 0.23251117 0.22566950 0.25121229 0.23742661 0.26552083 10 0.21824060 0.22023561 0.20317957 0.18452559 0.16554695 0.19895119 0.20062387 0.20847772 11 0.21667583 0.22502786 12 0.19373525 0.18640777 0.18959656 0.19433500 0.19950940 0.17590225 0.18079127 13 0.16736575 0.15166129 0.13536223 0.14879608 0.15006413 0.16388379 0.17927291 0.19506338 0.15097591 0.12733506 15 0.14137190 0.13406703 0.12097953 0.11913672 0.13287850 0.13056065 0.12494721 0.11781950 17 0.02560740 0.02974123 0.05084819 0.074B830B 0.09956413 18 0.07462902 0.03872172 0.00196281 -0.03186633 -0.06247911 19 0.35373041 0.35647584 0.34688476 0.3353030B 0.32329484 20 0.53142915 0.58337455 0.63705744 0.49240365 0.74936863 NBAR= 19 20 SIGMA= 1.04054609 1.03847598 1.03660613 0.67905730 0.77473493 0.86395148 0.31305200 0.32000713 0.32653283 0.15083935 0.11866679 0.08869584 0.38984097 0.44227957 0.41696330 0.23238968 0.22249192 0.21330856 0.21537530 0.20253911 0.19057117 0.34032511 0.36062308 0.37959968 0.18560184 0.16981277 0.15511223 8 0.23486885 0.23352250 0.23225475 0.27961514 0.29309454 0.30573976 10 0.14705815 0.12949654 0.11309256 0.23316359 0.24088080 0.24807338 11 0.20476341 0.20989365 0.21478088 13 0.11928194 0.10387135 0.08938096 0.21052136 0.22524623 0.23902193 15 0.10977003 0.11511325 0.10494736 0.10997267 16 0.10191087 0.09395452 0.12374736 17 0.14579768 0.16837447 -0.11418571 18 -0.08985219 -0.13569952 14 15 16 17 NBAR= 15 0.31179230 0.80788852 0.30111707 0.B6793400 A Particular and the Control of A STATE OF THE PROPERTY So of the second desired of the second second desired of the second seco 0.29126782 0.92945547 ### DB=30 A= 1.31995942 | NEA | AR= 3 | 4 | 5 | 6 | 7 | |---
---|--|--|--|--| | SIG | BHA= | | | | | | | 1.14546929 | 1.13378383 | 1.11795694 | 1.10391277 | 1.09228431 | | 0 | 0.41137788 | 0.39965000 | 0.39892609 | 0.37944478 | 0.38364070 | | 1 | 0.40973410 | 0.39845101 | 0.39661392 | 0:37927647 | 0.38048024 | | 2 | 0.40482349 | 0.39478789 | 0.39005468 | 0.37799183 | 0.37253840 | | 3 | 0.39670999 | 0.38848353 | 0.38022566 | 0.37378592 | 0.36305637 | | 4 | 0.38220602 | | 0.36830548 | 0.36507877 | 0.35410782 | | 5 | 0.37138025 | | 0.35520119 | 0.35145077 | 0.34487737 | | 6 | 0.35456600 | | 0.34120378 | 0.33489434 | 0.33268826 | | 7 | 0.33536945 | | 0.32592507 | 0.31698218 | 0.31583919 | | 8 | 0.31417494 | | 0.30855326 | 0.29947104 | 0.29556989 | | 9 | 0.29144608 | | 0.28933176 | 0.28226676 | 0.27517523 | | 10 | 0.26772128 | | 0.26506957 | 0.26369562 | 0.25690170 | | 11 | 0.24360278 | | 0.23947109 | 0.24174976 | 0.23948392 | | 12 | 0.21973916 | | 0.21313852 | 0.21580911 | 0.21892302 | | 13
14 | 0.19680185 | | 0.18822589 | 0.18776827 | 0.19238941 | | · | 0.17545686
0.15633372 | | 0.16686030 | 0.16176864 | 0.16218104 | | 15
16 | 0.13999385 | | 0.15053921
0.13972593 | 0.14252079
0.13304606 | 0.13609748 | | 17 | 0.12690077 | | 0.13772373 | 0.13304808 | 0.12724644 | | 18 | 0.11739471 | 0.12273975 | 0.13132856 | 0.13898565 | 0.14366619 | | 19 | 0.11167370 | 0.11822186 | 0.13069983 | 0.14552705 | 0.16108098 | | 20 | 0.10978286 | 0.11674892 | 0.13064547 | 0.14825097 | 0.16833961 | | | 0120770200 | 0122077572 | 0120001047 | 0124020077 | | | | | | | | | | NBA | R= 8 | 9 | 10 | 11 | 12 | | | R= 8 | 9 | 10 | 11 | 12 | | | | | 10
1.06829467 | 11
1.06274264 | 12
1.05800144 | | SIG | BMA=
1.08274533 | 1.07486916 | 1.06829467 | | | | | ima= | 1.07486916 | | 1.06274264 | 1.05800144 | | S IG | MA=
1.08274533
0.36553349
0.36651836 | 1.07486916
0.37283999
0.36863840 | 1.06829467 | 1.06274264 | 1.05800144 | | \$1G
0
1
2 | 6MA#
1.08274533
0.36553349 | 1.07486916
0.37283999
0.36863840
0.35991682 | 1.06829467
0.35609438
0.35832184 | 1.06274264
0.36520908
0.35985132 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971 | | \$IG | MA=
1.08274533
0.36553349
0.36651836
0.36697213 | 1.07486916
0.37283999
0.36863840
0.35991682 | 1.06829467
0.35609438
0.35832184
0.35948692 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425 | | \$16
0
1
2
3
4 | MA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693 | 1.06829467
0.35609438
0.35832184
0.35948692
0.35255635
0.34065797
0.33058330 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729 | | \$10
0
1
2
3
4
5
6 | iMA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710
0.33737697
0.32420854 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442 | 1.06829467
0.35609438
0.35832184
0.35948692
0.35255635
0.34065797
0.33058330
0.32063496 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571 | | 5 6 7 | MA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710
0.33737697
0.32420854
0.31153444 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483 | 1.06829467
0.35609438
0.35832184
0.35948692
0.35255635
0.34065797
0.33058330
0.32063496
0.30498710 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388 | | \$10
0
1
2
3
4
5
6
7
8 | 0.36553349 0.36553349 0.36657213 0.36234263 0.35135710 0.33737697 0.32420854 0.31153444 | 1.07486916
0.37283979
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483
0.29021815 | 1.06829467 0.35609438 0.35832184 0.3593635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 | 1.06274264 0.36520908 0.35985132 0.35134450 0.34732743 0.34142440 0.32820341 0.31429778 0.30292996 0.28702091 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884 | | \$1G
0
1
2
3
4
5
6
7
8
9 | MA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710
0.33737697
0.32420854
0.31153444
0.29567531
0.27487497 | 1.07486916
0.37283979
0.3683840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483
0.29021815
0.27480321 | 1.06829467 0.35609438 0.35832184 0.35938692 0.35255635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 0.26944342 | 1.06274264 0.36520908 0.35985132 0.35134450 0.34142440 0.32820341 0.31429778 0.30292996 0.28702091 0.26629922 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276 | | 51G
0
1
2
3
4
5
6
7
8
9 | MA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710
0.32737697
0.32420854
0.31153444
0.29567531
0.27487497
0.25243121 | 1.07486916
0.37283979
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453 | 1.06829467
0.35609438
0.35832184
0.35948692
0.3525535
0.34065797
0.33058330
0.32063496
0.30498710
0.28575982
0.26944342
0.25402167 | 1.06274264 0.36520908 0.35985132 0.35134450 0.34732743 0.34142440 0.32820341 0.31429778 0.30292996 0.28702091 0.26629922 0.24927776 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669 | | 51G
0
1
2
3
4
5
6
7
8
9
10 | MA=
1.08274533
0.36553349
0.36651836
0.36697213
0.36234263
0.35135710
0.33737697
0.32420854
0.21153444
0.29567531
0.27487497
0.25243121
0.23313675 | 1.07486916
0.37283979
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107 | 1.06829467
0.35609438
0.35832184
0.35948692
0.3525535
0.34055797
0.33058330
0.32063496
0.30498710
0.28575982
0.26944342
0.25402167
0.23243892 | 1.06274264 0.36520908 0.35985132 0.35134450 0.34732743 0.34142440 0.32820341 0.3142778 0.30292996 0.28702091 0.26629922 0.24927776 0.23360473 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992 | | 5IG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA=
1.08274533
0.365533349
0.3651836
0.36677213
0.36234263
0.35135710
0.33737697
0.32420854
0.31153484
0.29567531
0.27487497
0.25243121
0.23313675
0.21671944 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892 | 1.06829467 0.35609438 0.35832184 0.35948692 0.35255635 0.34065797 0.33058330 0.320498710 0.28575982 0.26944342 0.25402167 0.23243892 0.20795448 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000 | | 5IG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 |
MA=
1.08274533
0.365533349
0.3651836
0.36677213
0.36234263
0.35135710
0.33737697
0.32420854
0.311537697
0.27487497
0.27487497
0.25243121
0.23313675
0.21671944
0.19667243 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049 | 1.06829467
0.35609438
0.35832184
0.35948692
0.35255635
0.34065797
0.33058330
0.32043496
0.320438710
0.28575982
0.26944342
0.25402167
0.23243892
0.20795448
0.19066769 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699
0.18637249 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.298492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047 | | 51G
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1.08274533
0.365533349
0.36651836
0.36677213
0.36234263
0.35135710
0.33737697
0.32420854
0.311537444
0.29567531
0.25243121
0.25243121
0.25243121
0.25243121
0.25243121
0.2524313675
0.21671944
0.19667243 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693.
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049
0.17392924 | 1.06829467
0.35609438
0.35832184
0.35948692
0.35255635
0.34065797
0.33058330
0.32063496
0.32063496
0.32063496
0.28575982
0.26944342
0.25402167
0.23243892
0.20795448
0.19066769
0.17621367 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699
0.18637249
0.17325901 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047
0.16783329 | | 51G
01123456789101112131415 | MA=
1.08274533
0.365533349
0.36651836
0.36677213
0.36234263
0.35135710
0.33737697
0.32420854
0.311537444
0.29567531
0.27487497
0.25243121
0.25243121
0.23313675
0.21671944
0.19667243
0.16770204
0.13481740 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049
0.17392924
0.13927129 | 1.06829467 0.35609438 0.35832184 0.35948692 0.35255635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 0.26944342 0.25402167 0.23243892 0.20795448 0.19066769 0.17621367 0.14695928 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699
0.18637249
0.17325901
0.15385515 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047
0.16783329
0.156666887 | | 51G
012345678910111213141516 | IMA= 1.08274533 0.365533349 0.36651836 0.36697213 0.36234263 0.35135710 0.33737697 0.32420854 0.27487497 0.27487497 0.27487497 0.27487497 0.27487497 0.27487497 0.16770204 0.13481740 0.11331119 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049
0.17392924
0.13927129
0.10682939 | 1.06829467 0.35609438 0.35832184 0.35948692 0.35255635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 0.26944342 0.25402167 0.23243892 0.20795448 0.19066769 0.17621367 0.14695928 0.10572966 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699
0.18637249
0.17325901
0.15385515
0.11015470 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047
0.16783329
0.15666687
0.11841482 | | 51G
0123456789
10112131451617 | iMA= 1.08274533 0.36553349 0.36651836 0.36657213 0.36234263 0.35135710 0.33737697 0.32420854 0.27487497 0.25243121 0.27487497 0.25243121 0.21671944 0.19667243 0.16770204 0.13481740 0.11331119 0.11695793 | 1.07486916
0.37283979
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049
0.17392924
0.13927129
0.10682939
0.10391002 | 1.06829467 0.35609438 0.35832184 0.35934692 0.35255635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 0.26944342 0.25402167 0.23243892 0.20795448 0.17066769 0.17621367 0.14695928 0.10572966 0.09038603 | 1.06274264 0.36520908 0.35985132 0.35134450 0.34732743 0.34142440 0.32820341 0.31429778 0.30292996 0.28702091 0.26629922 0.24927776 0.23360473 0.21014699 0.18637249 0.17325901 0.15385515 0.11015470 0.07873846 | 1.05800144
0.34939357
0.35289439
0.35356739
0.34424971
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047
0.16783329
0.156666887 | | 51G
012345678910111213141516 | IMA= 1.08274533 0.365533349 0.36651836 0.36697213 0.36234263 0.35135710 0.33737697 0.32420854 0.27487497 0.27487497 0.27487497 0.27487497 0.27487497 0.27487497 0.16770204 0.13481740 0.11331119 | 1.07486916
0.37283999
0.36863840
0.35991682
0.35275977
0.34699528
0.33726693
0.32169442
0.30479483
0.29021815
0.27480321
0.25390453
0.23017107
0.21091892
0.19582049
0.17392924
0.13927129
0.10682939 | 1.06829467 0.35609438 0.35832184 0.35948692 0.35255635 0.34065797 0.33058330 0.32063496 0.30498710 0.28575982 0.26944342 0.25402167 0.23243892 0.20795448 0.19066769 0.17621367 0.14695928 0.10572966 | 1.06274264
0.36520908
0.35985132
0.35134450
0.34732743
0.34142440
0.32820341
0.31429778
0.30292996
0.28702091
0.26629922
0.24927776
0.23360473
0.21014699
0.18637249
0.17325901
0.15385515
0.11015470 | 1.05800144
0.34939357
0.35289439
0.35356739
0.33498425
0.32782729
0.31407571
0.29765388
0.28492884
0.26806276
0.24624669
0.22995992
0.21301000
0.18676047
0.15666687
0.11841482
0.07092128 | | NBA | Ŕ ™ 13 | 14 | 15 | 16 | 17 | |--|---|---|--|------------|------------| | CTO | MA | | | | | | 510 | ma≈
1.05391085 | 3.05034940 | 1.04722218 | 1.04445596 | 1.04199211 | | | 1.03371083 | 4 100004740 | 1.04/ 44410 | 110444556 | 1104111111 | | 0 | 0.35945149 | 0.34520378 | 0.37452154 | 0.45132882 | 0.50698314 | | i | 0.35308293 | 0.34930265 | 0.33152320 | 0.35441116 | 0.35757444 | | 2 | 0.34584918 | 0.34796894 | 0.32910403 | 0.30724638 | 0.28933460 | | 3 | 0.34393159 | 0.33844999 | 0.35206671 | 0.36604591 | 0.38200624 | | 4 | 0.33480656 | 0.33293826 | 0.32593496 | 0.31908237 | 0.31237719 | | 5 | 0.32213572 | 0.32280025 | 0.31506757 | 0.30675618 | 0.29845584 | | å | 0.31302240 | 0.30029602 | 0.31803841 | 0.32092093 | 0.34017827 | | 7 | 0.29826556 | 0.29756420 | 0.28788388 | 0.27792481 | 0.24798064 | | 8 | 0.28030960 | 0.28079828 | 0.27975829 | 0.27844048 | 0.27716927 | | 9 | 0.26487578 | 0.26258025 | 0.26855742 | 0.27564604 | 0.28302185 | | 10 | 0.24809470 | 0.24873335 | 0.23898597 | 0.22846477 | 0.21701312 | | 11 | 0.22612500 | 0.22675899 | 0.23077914 | 0.23498647 | 0.23929878 | | 12 | 0.21169829 | 0.20747551 | 0.20908438 | 0.21149437 | 0.21416673 | | 13 | 0.19051974 | 0.19303931 | 0.18554073 | 0.17686592 | 0.16789373 | | 14 | 0.16430657 | 0.16504980 | 0.17261675 | 0.18098417 | 0.18955667 | | 15 | 0.15452336 | 0.14930905 | 0.14540125 | 0.14180487 | 0.13839889 | | 16 | 0.12767253 | 0.13501646 | 0.13361898 | 0.13051220 | 0.12662960 | | 17 | 0.06813496 | 0.07052274 | 0.08207055 | 0.09511568 | 0.10848460 | | 10 | 0.08538784 | 0.06659151 | 0.04713308 | 0.02910797 | 0.01268861 | | 19 | 0.22825405 | 0.23090928 | 0.22675645 | 0.22147286 | 0.21588196 | | 20 | 0.32104629 | 0.35058223 | 0.38110860 | 0.41258152 | 0.44497141 | | | | | | | | | | | | | | | | NBA | R= 18 | 19 | 20 | | | | • | | 19 | 20 | | | | NBA
SIG | HA= | | | | | | • | | 19
1.03779568 | 20 | | | | 8 10 | MA*
1.03978474 | 1.03779568 | 1.03599463 | | | | 8 10 | MA*
1.03978474
0.56125249 | 1.03779568 | 1.03599463 | | | | \$16
0 | MA=
1.03978474
0.56125249
0.36078560 | 1.03779568
0.61288167
0.36391327 | 1.03599463
0.66119644
0.36688109 | | | | \$10
0
1
2 |
MA*
1.03978474
0.56125249 | 1.03779568
0.61288167
0.36391327
0.25181629 | 1.03599463
0.66119644
0.36688109
0.23478212 | | | | \$16
0 | MA*
1.03978474
0.56125249
0.36078560
0.27006539 | 1.03779568
0.61288167
0.36391327 | 1.03599463
0.66119644
0.36688109 | | | | \$16
0
1
2
3 | MA*
1.03978474
0.56125249
0.36078560
0.27006539
0.39687531 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095 | | | | 816
0
1
2
3 | MA*
1.03978474
0.56125249
0.36078560
0.27006539
0.39687531
0.30597732 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29996872 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.29439096 | | | | 8IG
0
1
2
3
4
5
6
7 | MA** 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29996872
0.28287572 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.29439096
0.27581053 | | | | SIG
0
1
2
3
4
5
6
7
8 | MA** 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.39597732 0.29044804 0.35124991 0.25838163 0.27597035 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29996872
0.29987572
0.28287572
0.36184359
0.24930459
0.27484841 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.29439096
0.27581053
0.37179381 | | | | 8IG
0
1
2
3
4
5
6
7
8
9 | MA** 1.03978474 0.56125249 0.36078560 0.27006537 0.39687531 0.30597732 0.29044804 0.35124991 0.25838163 0.27597035 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29796572
0.28287572
0.28287572
0.36184359
0.24930459
0.27484841
0.29743370 | 1.03599463
0.66119644
0.3668109
0.23478212
0.42438095
0.27438096
0.27581053
0.37179381
0.24083913
0.27380389
0.30407495 | | | | \$10
0
1
2
3
4
5
6
7
8
9 | MA* 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.35838163 0.27597035 0.29038594 0.20744812 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29796872
0.28287572
0.36184359
0.24930459
0.27484841
0.29743370
0.19759350 | 1.03599463
0.66119644
0.3668109
0.23478212
0.42438095
0.274581053
0.37179381
0.24083913
0.27380389
0.30407495
0.18836812 | | | | 810
0
1
2
3
4
5
6
7
8
9
10 | MA* 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.25838163 0.27597035 0.29038584 0.20744812 0.24352127 | 1.03779568
0.61288167
0.36391327
0.25181629
0.41107015
0.29987572
0.28987572
0.36184359
0.24930459
0.27484841
0.29743370
0.19759350
0.24754561 | 1.03599463
0.66119644
0.3668109
0.23478212
0.42438095
0.274581053
0.37177381
0.24083913
0.27380389
0.30407495
0.18836812
0.25131299 | | | | 810
012345678910112 | MA* 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.35838163 0.27597035 0.29038594 0.20744812 0.24352127 0.21689450 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.274581053
0.37179381
0.24083913
0.24083913
0.30407495
0.18836812
0.25131299
0.22212966 | | | | 810
0
1
2
3
4
5
6
7
8
9
10
11
12
3 | MA= 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838163 0.27597035 0.27038594 0.20744812 0.24352127 0.21689450 0.15904432 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.274581053
0.37179381
0.24083913
0.27380389
0.30407495
0.18836812
0.25131299
0.2212966
0.14254570 | | | | 810
0
12345678
9
10
112
13
14 | MA= 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838163 0.27597035 0.29038594 0.20744812 0.24352127 0.21689450 0.15904432 0.15795573 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.27481053
0.37179381
0.24083913
0.27380389
0.30407495
0.18836812
0.25131299
0.2212966
0.14254570
0.21349591 | | | | 810
01234567891011231415 | MA= 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838163 0.27597035 0.279038594 0.20744812 0.24352127 0.21689450 0.15904432 0.19795573 0.13524182 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.247484841 0.297484841 0.29748370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 0.13235237 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.29439096
0.37581053
0.37179381
0.24083913
0.27380389
0.30407495
0.18836812
0.25131299
0.2212966
0.14254570
0.21349591
0.12973101 | | | | 810
012345678
90112314
1516 | MA= 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838124991 0.27597035 0.29038594 0.20744812 0.24352127 0.21689450 0.15904432 0.15795573 0.13524182 0.12237760 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 0.13235237 0.11801458 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.29439096
0.27581053
0.37179381
0.24083913
0.27380389
0.30407495
0.18836812
0.25131299
0.2212966
0.14254570
0.1349591
0.12973101
0.11370581 | | | | 810
012345678
90112314
115167 | MA** 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838130 0.27587035 0.29038584 0.20744812 0.24352127 0.21689450 0.15904432 0.15795573 0.13524182 0.12237760 0.12159283 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 0.13235237 0.11801458 0.13411302 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.27581053
0.37177381
0.24083913
0.27380389
0.30407495
0.1836812
0.25131299
0.2012966
0.14254570
0.11370581
0.14586632 | | | | 810
0123456789
10112341561718 | MA** 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838163 0.27597035 0.29038584 0.20744812 0.24352127 0.21689450 0.15904432 0.19795573 0.13524182 0.12237760 0.12159283 -0.00209515 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 0.13235237 0.11801458 0.13411302 | 1.03599463 0.66119644 0.3668109 0.23478212 0.42438095 0.27439096 0.27581053 0.37179381 0.24083913 0.27380389 0.30407495 0.18836812 0.25131299 0.22212966 0.14254570 0.21349591 0.11370581 0.14586632 -0.02708000 | | | | 810
012345678
90112314
115167 | MA** 1.03978474 0.56125249 0.36078560 0.27006539 0.39687531 0.30597732 0.29044804 0.35124991 0.25838130 0.27587035 0.29038584 0.20744812 0.24352127 0.21689450 0.15904432 0.15795573 0.13524182 0.12237760 0.12159283 | 1.03779568 0.61288167 0.36391327 0.25181629 0.41107015 0.29996872 0.28287572 0.36184359 0.24930459 0.27484841 0.29743370 0.19759350 0.24754561 0.21957026 0.15055119 0.20597349 0.13235237 0.11801458 0.13411302 | 1.03599463
0.66119644
0.36688109
0.23478212
0.42438095
0.27581053
0.37177381
0.24083913
0.27380389
0.30407495
0.1836812
0.25131299
0.2012966
0.14254570
0.11370581
0.14586632 | | | #### NR≃35 ## A= 1.50324775 | NBA | Rw 4 | 5 | 6 | 7 | 8 | |--|---|---|--|---|--| | SIG | HA= | | | | | | | 1.11336325 | 1.10503227 | 1.09509197 | 1.08591640 | 1.07794678 | | 0 | 0.46022724 | 0.45750600 |
0.44560608 | 0.44456014 | 0.43255796 | | 1 | 0.45818926 | 0.45511902 | 0.44420476 | 0.44173922 | 0.43187042 | | 3 | 0.42511000 | 0.44814047 | 0.43967242 | 0.43406780 | 0.42855436 | | | 0.44209297 | 0.43705822 | 0.43126655 | 0.42324204 | 0.42035251 | | 4 | 0.42830705 | 0.42251171 | 0.41037937 | 0.41044626 | 0.40673279 | | 5 | 0.41099510 | 0.40510464 | 0.40115802 | 0.39548979 | 0.38757322 | | 6 | 0.39045376 | 0.38525940 | 0.38042542 | 0.37728968 | 0.37112930 | | 7 | 0.36705517 | 0.36317207 | 0.35750477 | 0.35525459 | 0.35147513 | | 8 | 0.34124081 | 0.33888790 | 0.33347386 | .0.33026493 | 0.32904288 | | 9 | 0.21225033 | 0.31245812 | 0.30868429 | 0.30426544 | 0.30319769 | | 30 | 0.28451488 | 0.28413479 | 0.28275002 | 0.27074062 | 0.27589582 | | 11 | 0.25487803 | 0.25450309 | 0.25507433 | 0.25350278 | 0.24993354 | | 13 | 0.22536772 | 0.22451006 | 0.22562197 | 0.22691084 | 0.22559479 | | 13 | 0.19479008 | 0.19536788 | 0.19546540 | 0.19779786 | 0.19993196 | | 14 | 0.16997996 | 0.19039353 | 0.16673706 | 0.16739059 | 0.17041380 | | 15 | 0.14576245 | 0.14463708 | 0.14195221 | 0.13963053 | 0,13956009 | | 16 | 0.12490939 | 0.12500702 | 0.12303528 | 0.11925266 | 0.11517525 | | 17
18 | 0.10808480 | 0.10990033 | 0.11057137 | 0.10883466 | 0.10457004 | | 19 | 0.09550203 | 0.09937126 | 0.10369384 | 0.10698500 | 0.10832867 | | 20 | 0.08592358 | 0.09324462 | 0.10067347 | 0.10913400 | 0,11780716 | | 20 | 0108212228 | 0.04152102 | 0.09988811 | 0.11050049 | 0.12250428 | | | | | | | | | NBA | R ≈ • | 10 | 11 | 12 | 13 | | ABN
BI3 | | 10 | 11 | 12 | 13 | | | | 10 | 11 | 12 | 13 | | | MA= | | | | | | \$10 | MA=
1.07113025 | 1.06530267 | 1.04029591 | 1.05596440 | 1.05218717 | | \$10
0
1
2 | MA=
1.07113025
0.43394393
0.43058058
0.42255262 | 1.06530267
0.42295228
0.42301371
0.42029120 | 1.04029591
0.42600171
0.42202122
0.41416752 | 1.05596440
0.41585528
0.41667082
0.41382617 | 1.0521 8717 0.42001931 0.41538259 0.40827881 | | \$10
0
1
2
3 | MA=
1.07113025
0.43374373
0.43058058
0.42255262
0.41313656 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432 | 1.04029591
0.42600171
0.42202122
0.41416752
0.40662740 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964 | 1.05218717
0.42001931
0.41538257
0.40827881
0.40204348 | | \$18
0
1
2
3 | MA=
1.07113025
0.43374373
0.43058058
0.42255262
0.41313656
0.40238747 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.37725833 | 1.04029591
0.42600171
0.42202122
0.41416752
0.40662740
0.39611025 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.39126818 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.38998172 | | \$18
0
1
2
3
4
5 | MA=
1.07113025
0.43374393
0.43058058
0.42255262
0.41313656
0.40238947
0.38768221 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.37725833
0.38251579 | 1.04029591
0.42600171
0.42202122
0.41416752
0.40662740
0.39611025
0.37984663 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.39126818
0.37839920 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.38998172
0.37422349 | | \$10
0
1
2
3
4
5 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.37725833
0.38251579
0.36622236 | 1.04029591
0.42400171
0.42202122
0.41416752
0.40642740
0.39611025
0.3798463
0.36158892 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.39126818
0.37839920
0.36039109 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.38998172
0.37422349
0.35884785 | | \$10
0
1
2
3
4
5
6
7 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.34660661 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.37725833
0.38251579
0.36622236
0.34551468 | 1.04029591 0.42400171 0.42202122 0.41414752 0.40642740 0.39411025 0.37984643 0.36158892 0.34333450 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.37839920
0.36039109
0.33956707 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.38978172
0.37422349
0.35884785
0.33884785 | | \$10
0
1
2
3
4
5
6
7
8 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238747 0.38768221 0.36822061 0.34660661 0.32506310 | 1.06530267
0.42295228
0.42301371
0.42029120
0.41111432
0.38251579
0.36622236
0.34551468
0.32174850 | 1.04029591 0.42400171 0.4220122 0.41414752 0.40642740 0.37984643 0.36158892 0.34333450 0.32156327 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.37839920
0.36039109
0.33956707
0.31965454 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.38998172
0.37422349
0.35884785
0.33908460
0.31648113 | | \$10
0
1
2
3
4
5
6
7
8
9 | MA= 1.07113025 0.43394393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.34660661 0.32506310 0.30227392 | 1.06530267
0.42295228
0.42301371
0.42029120
0.41111432
0.39251579
0.3662236
0.34551468
0.32174850
0.29867328 | 1.04029591 0.42400171 0.42202122 0.41414752 0.40642740 0.396186892 0.36186892 0.34333450 0.32156327 0.29635204 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.371349920 0.36039109 0.33956707 0.31965454 0.29671466 | 1.05218717
0.42001731
0.41538257
0.40827881
0.40204348
0.387422347
0.35884785
0.33908460
0.31648113
0.29552737 | | \$18
0
1
2
3
4
5
6
7
8
9 | MA= 1.07113025 0.43394393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.34660661 0.32506310 0.30227392 0.27608557 | 1.06530267
0.42295228
0.42301371
0.42029120
0.41111432
0.397251579
0.36622236
0.34551468
0.32174850
0.29867328
0.27557951 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40642740 0.396184863 0.36188892 0.3433350 0.32156327 0.29635204 0.27256068 | 1.05596440
0.41585528
0.41667082
0.41382617
0.40350964
0.371389920
0.36039109
0.36039109
0.33956707
0.31965454
0.29671466
0.27053096 | 1.05218717
0.42001931
0.41538259
0.40827881
0.40204348
0.337422349
0.35884785
0.33908460
0.31648113
0.29552737 | | \$10
1
2
3
4
5
6
7
8
9
10 | MA= 1.07113025 0.43354393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.34660661 0.32506310 0.30227352 0.27608557 0.24811021 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.3772853
0.38251577
0.36622236
0.34551468
0.32174850
0.27867328
0.27557751
0.24700278 | 1,04029591 0,42400171 0,42202122 0,41414752 0,40642740 0,39784463 0,36158892 0,3433350 0,32156327 0,27635204 0,27256068 0,24930117 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.371389920 0.36039109 0.33956707 0.31965454 0.29671466 0.27053096 | 1.05218717
0.42001731
0.41538259
0.40827881
0.40204348
0.387921349
0.33894785
0.338084785
0.31648113
0.27552737
0.27116370
0.24476452 | | \$10
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.07113025 0.43354393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.3682061 0.32506310 0.32506310 0.30227352 0.27608557 0.24811021 0.22247538 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.39725833
0.38251577
0.36622236
0.36622236
0.32174850
0.27867328
0.27557751
0.24900278
0.2085536 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40662740 0.39611025 0.37984663 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.371389109 0.36039109 0.36039107 0.31945454 0.27471466 0.27053096 0.24705913 | 1.05218717
0.42001731
0.41538259
0.40827881
0.40204348
0.387421349
0.35884785
0.33908460
0.31648113
0.29552737
0.27116370
0.24476452
0.22248505 | | \$10
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.07113025 0.43354393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.3682261 0.3682061 0.32506310 0.32506310 0.32506310 0.32506310 0.3227352 0.27608557 0.24811021 0.22247538 0.15746472 | 1.06530267
0.42275228
0.42301371
0.42029120
0.41111432
0.39725833
0.38251579
0.36522236
0.3452236
0.32174850
0.27867328
0.27557951
0.24900278
0.2085536
0.19679240 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40662740 0.39611025 0.37984663 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 0.36158892 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.37138920 0.36039109 0.36039107 0.319654507 0.31965454 0.2765913 0.2765913 0.2765925 | 1.05218717
0.42001731
0.41538259
0.40827881
0.40204348
0.38978172
0.37823349
0.338084785
0.33808460
0.31648113
0.29552737
0.27116370
0.24476452
0.22248505
0.19690616 | | \$10
0123456789101121314 | MA= 1.07113025 0.43374393 0.43058058 0.42255242 0.41313656 0.40238947 0.38768221 0.3682061 0.32506310 0.32506310 0.32506557 0.24811021 0.27608557 0.24811021 0.27247938 0.17944472 0.17373327 | 1.06530267
0.42275228
0.42301371
0.42029120
0.41111432
0.39725833
0.38251579
0.36522236
0.345622236
0.32174850
0.27867328
0.27557951
0.24900278
0.2085536
0.17679240
0.17499662 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40662740 0.39611025 0.37984663 0.36158892 0.36158892 0.36158350
0.32156327 0.27635204 0.27256068 0.24930117 0.22193128 0.19458848 0.17352125 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.371269109 0.36039109 0.36039109 0.31965454 0.2765454 0.27653096 0.24705913 0.22333235 0.19486224 0.17075415 | 1.05218717
0.42001731
0.41538259
0.40827881
0.40204348
0.38978172
0.37422349
0.35884785
0.35884785
0.35884785
0.31648113
0.27552737
0.27116370
0.24476452
0.22248505
0.19690616
0.16900933 | | \$10
012345678901123145 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238947 0.38768221 0.36822061 0.32506310 0.32506310 0.30227392 0.24811021 0.27608557 0.24811021 0.22247938 0.19946472 0.17373327 0.14222007 | 1.06530267
0.42275228
0.42301371
0.423019120
0.41111432
0.39725833
0.38251579
0.36522236
0.34574650
0.27557951
0.24900278
0.27557951
0.24900278
0.2085336
0.17479662
0.14643194 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40642740 0.39611025 0.37984663 0.36158892 0.36156327 0.27635604 0.27256068 0.24930117 0.22193128 0.19458848 0.17352125 0.15022062 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.37126818 0.37839920 0.36039109 0.3396707 0.31965454 0.27053096 0.24705913 0.22333235 0.19486224 0.17075415 0.15181360 | 1.05218717
0.42001731
0.41538257
0.40827881
0.40204348
0.38778172
0.37422347
0.37422347
0.37422347
0.37422347
0.31648113
0.2752737
0.27116370
0.27476452
0.22248505
0.19690616
0.16900733
0.15077021 | | \$1 0123456789011231456 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238747 0.38768221 0.36822061 0.32506310 0.32506310 0.30227392 0.24811021 0.22247938 0.17946472 0.17373327 0.1422007 0.11251767 | 1.06530267
0.42275228
0.42301371
0.423019120
0.41111432
0.39725833
0.38251579
0.36522236
0.34574850
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40642740 0.37984663 0.36158892 0.3433360 0.32156327 0.27635204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.17352128 0.17458848 0.17352125 0.15022062 0.11509972 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.37126818 0.37839920 0.36039109 0.33956707 0.31965454 0.29671466 0.27653096 0.2765333235 0.12486224 0.17075415 0.15181360 0.11970284 | 1.05218717
0.42001731
0.41538257
0.40827881
0.40204348
0.38778172
0.37422347
0.37422347
0.339884785
0.3396860
0.31648113
0.2752737
0.27476452
0.12248505
0.19690616
0.16900933
0.15077021
0.12478504 | | \$1
012345678901234567 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238747 0.38768221 0.36822061 0.3466661 0.32506310 0.32506557 0.27606557 0.27606557 0.274811021 0.27247938 0.27247938 0.17373327 0.14222007 0.11251767 0.09887170 | 1.06530267
0.42275228
0.42301371
0.42027120
0.41111432
0.37725833
0.38251579
0.36522236
0.34551468
0.34551468
0.32174850
0.27857751
0.27857751
0.27857751
0.27857751
0.27857751
0.27857751
0.17477662
0.17477662
0.11243357
0.07260167 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40662740 0.37984663 0.36158892 0.343356327 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.17352125 0.115022062 0.115022062 0.115027980 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.37126818 0.37839920 0.36039109 0.33936707 0.31965454 0.27653096 0.27653096 0.2765333335 0.12486224 0.17075415 0.15181360 0.11970284 0.08340712 | 1.05218717
0.42001931
0.41538289
0.40827889
0.40204348
0.38978172
0.37422349
0.35884785
0.33908460
0.31648113
0.29552737
0.27116370
0.27476452
0.12690616
0.16900733
0.15077021
0.12478504
0.08227639 | | \$1 0123456789011231456 | MA= 1.07113025 0.43374393 0.43058058 0.42255262 0.41313656 0.40238747 0.38768221 0.36822061 0.32506310 0.32506310 0.30227392 0.24811021 0.22247938 0.17946472 0.17373327 0.1422007 0.11251767 | 1.06530267
0.42275228
0.42301371
0.423019120
0.41111432
0.39725833
0.38251579
0.36522236
0.34574850
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951
0.27557951 | 1.04029591 0.42400171 0.42202122 0.41416752 0.40642740 0.37984663 0.36158892 0.3433360 0.32156327 0.27635204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.27435204 0.17352128 0.17458848 0.17352125 0.15022062 0.11509972 | 1.05596440 0.41585528 0.41667082 0.41382617 0.40350964 0.37126818 0.37839920 0.36039109 0.33956707 0.31965454 0.29671466 0.27653096 0.2765333235 0.12486224 0.17075415 0.15181360 0.11970284 | 1.05218717
0.42001731
0.41538257
0.40827881
0.40204348
0.38778172
0.37422347
0.37422347
0.339884785
0.3396860
0.31648113
0.2752737
0.27476452
0.12248505
0.19690616
0.16900933
0.15077021
0.12478504 | | NBA | R= 14 | 15 | 16 | 17 | 18 | |---|---|--|--------------------------|--------------------------|------------| | SIG | MA= | | | | | | | 1.04887550 | 1.04594642 | 1.04334106 | 1.04100955 | 1.03891236 | | 0 | 0.41088811 | 0:43771838 | 0.46638599 | 0.49555224 | 0.52412707 | | 1 | 0.41208376 | 0.41219267 | 0.41276393 | 0.41358125 | 0.41451420 | | 2 | 0.40824297 | 0.39690140 | 0.38519376 | 0.37355977 | 0.36234067 | | 3 | 0.39791758 | 0.40431528 | 0.41139318 | 0.41876254 | 0.42606813 | | 4 | 0.38789601 | 0.38313638 | 0.37657600 | 0.37418134 | 0.37002011 | | 5 | 0.37362969 | 0.36855528 | 0.36327756 | 0.35808607 | 0.35311406 | | 6 | 0.35542305 | 0.35996844 | 0.36517281 | 0.37063302
0.32014550 | 0.31446273 | | 7 | 0.33796386 | 0.33203933 | 0.32605725 | | 0.31165394 | | 8 | 0.31615776 | 0.31504798 | 0.31384080
0.29901784 | 0.31270700
0.30267524 | 0.30633040 | | 9 | 0.29272141 | 0.29556181 | 0.25955699 | 0.25354030 | 0.24769395 | | 10 | 0.27115552 | 0.26553433
0.24690522 | 0.24899691 | 0.25115913 | 0.25329089 | | 11
12 | 0.22009005 | 0.22087918 | 0.22211649 | 0.22348459 | 0.22488756 | | 13 | 0.19824744 | 0.19414036 | 0.18942807 | 0.18456320 | 0.17976037 | | 14 | 0.14954553 | 0.17374818 | 0.17834080 | 0.18302834 | 0.18762000 | | 15 | 0.14809441 | 0.14613995 | 0.14433923 | 0.14262096 | 0.14101596 | | 16 | 0.12881715 | 0.12811236 | 0.12652002 | 0.12452435 | 0.12233093 | | 17 | 0.08381463 | 0.09023474 | 0.09739135 | 0.10469392 | 0.11185102 | | 18 | 0.07179661 | 0.06176209 | 0.05239095 | 0.04378707 | 0.03598142 | | 19 | 0.15179958 | 0.15029091 | 0.14814268 | 0.14578119 | 0.14346785 | | 20 | 0.21274381 | 0.23007159 | 0.24794608 | 0.26634705 | 0.28524971 | | | | | | | | | NBA | R= 19 | 20 | | | | | NBA | R= 19 | 20 | | | | | | HA= | | | | | | | | 20
1.03529365 | | | | | | HA= | | | | | | SIG
0
1 | HA=
1.03701600 | 1.03529365 | | | | | \$1G | MA=
1.03701600
0.55143119 | 1.03529365 | | | | | 0
1
2
3 | HA=
1.03701600
0.55143119
0.41548286
0.35171925
0.43310135 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287 | | | | | 0
1
2
3 | HA=
1.03701600
0.55143119
0.41548286
0.35171925
0.43310135
0.36612629 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249 | | | | | SIG
0
1
2
3
4
5 | HA=
1.03701600
0.55143119
0.41548286
0.35171925
0.43310135
0.36612629
0.34842592 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173 | | | | | SIG
0
1
2
3
4
5 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666 | | | | | SIG
0
1
2
3
4
5
6
7 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825 | | | | | \$10
0
1
2
3
4
5
6
7
8 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545 | | | | | 0
1
2
3
4
5
6
7
8 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.38432592 0.38130814 0.30909310 0.31067811 0.30986881 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400 | | | | | \$1G
0
1
2
3
4
5
6
7
8
.9 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.30986881 0.24212983 |
1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.23690816 | | | | | 0
1
2
3
4
5
6
7
8
9 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36412592 0.34842592 0.34842592 0.30909310 0.31067811 0.30986881 0.24212983 0.25533478 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.3626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.30986881 0.24212983 0.25533478 0.22626984 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852
0.22759762 | | | | | \$10
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.38130814 0.30909310 0.31067811 0.30986881 0.24212983 0.25533478 0.22626984 0.17513969 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.3626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852
0.22759762
0.17076980 | | | | | SIG
0 1
2 3 4 5 6 7 8 9 10 11 12 13 14 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30986881 0.30986881 0.24212983 0.25533478 0.22626984 0.17513969 0.19201064 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852
0.22759762
0.17076980
0.19614174 | | | | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30986881 0.30986881 0.24212983 0.24212983 0.25533478 0.22626984 0.17513969 0.19201064 0.13953900 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852
0.22759762
0.17076980
0.19614174
0.13818953 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.30986881 0.205233478 0.22626984 0.17513969 0.19201064 0.13953900 0.12007143 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.23690816
0.25725852
0.22759762
0.17076980
0.19614174
0.13818953
0.11783097 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.30986881 0.24212983 0.25533478 0.22626984 0.17513969 0.17201064 0.13953900 0.12007143 0.11869814 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.235926852
0.22759762
0.12725852
0.12725852
0.12725852
0.127259762
0.17076980
0.19614174
0.13818953
0.11783097
0.12514404 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.3098881 0.225233478 0.225233478 0.225233478 0.17513969 0.17201064 0.13953900 0.12007143 0.11869814 0.02895134 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.235925852
0.22725852
0.22725852
0.127076980
0.19614174
0.13818953
0.11783097
0.12514404
0.02264803 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | HA= 1.03701600 0.55143119 0.41548286 0.35171925 0.43310135 0.36612629 0.34842592 0.38130814 0.30909310 0.31067811 0.30986881 0.24212983 0.25533478 0.22626984 0.17513969 0.17201064 0.13953900 0.12007143 0.11869814 | 1.03529365
0.57709980
0.41643738
0.34178862
0.43974287
0.36251249
0.34405173
0.38626666
0.30407825
0.30977545
0.31322400
0.235926852
0.22759762
0.12725852
0.12725852
0.12725852
0.127259762
0.17076980
0.19614174
0.13818953
0.11783097
0.12514404 | | | | THE PARTY OF P #### DR=40 ### A= 1.68649887 | NBA | AR= 4 | 5 | 6 | 7 | 8 | |---|---|--|---|--|--| | SIG | SMA= | | | | | | | 1,0916125 | 6 109095825 | 1.09537792 | 1.07885547 | 1.07260233 | | 0 | 0.5139736 | 1 0.51362998 | 0.50745000 | 0.50462034 | 0.49645994 | | 1 | 0.5112331 | | 0.50504950 | 0.50164136 | 0.49453651 | | 2 | 0.5031055 | 1 0.50270839 | 0.49784732 | 0.49311502 | 0.48819461 | | 3 | 0.4898605 | 9 0.48942122 | 0.46563392 | 0.47996256 | 0.47645277 | | 4 | 0,47191529 | 9 0.47145290 | 0.46842771 | 0.46296212 | 0.45925027 | | 5 | 0.4497916 | 6 0.44934348 | 0.44657496 | 0.44233805 | 0.43779582 | | 6 | 0.42407289 | 9 0.42368163 | 0.42081335 | 0.41795849 | 0.41352377 | | 7 | 0,3953667 | 1 0.39504548 | 0.39212026 | 0.38995094 | 0.38691736 | | 8 | 0,3642838 | 2 0.36408547 | 0.36144372 | 0.35914967 | 0.35763255 | | 9 | 0.3314350 | | 0.32947392 | 0.32691920 | 0.32577875 | | 10 | 0.2974451 | | 0.29659386 | 0.29445703 | 0.29273539 | | 11_ | | | 0.26304406 | 0.26218198 | 0.26033033 | | 12 | 0.22876039 | | 0.22720802 | 0.22980242 | 0,22918936 | | 13 | 0.1955988 | | 0.19584902 | 0.19710581 | 0.19829335 | | 14 | 0.1643738 | - · · · - · - | 0.16415166 | 0.16486714 | 0.16665458 | | 15 | 0.13601179 | | 0.13552956 | 0.13509362 | 0.13558846 | | 16 | 0.11143183 | | 0.11129162 | 0.11029445 | 0.10901503 | | 17 | 0.0914751 | | 0.09233614 | 0.09223294 | 0.09096369 | | 18
19 | 0.07682626 | | 0.07902144 | 0.08106297 | 0.08236193 | | 20 | 0.06794096 | | 0.07125775 | 0.07549877 | 0.08021297 | | 20 | 010047720. | 1 0.06530450 | 0.06674080 | 0.07389706 | 0.08016238 | | | | | | | | | NBA | ıR≈ 9 | 10 | 11 | 12 | 13 | | | iR≈ 9
iMA= | 10 | 11 | 12 | 13 | | | • | | 11
1.05755231 | 12
1.05367747 | 13 | | SIG | MA=
1.06695332 | 2 1.06195298 | 1.05755231 | 1.05367747 | 1.05025449 | | | MA= | 2 1.06195298
2 0.48729462 | 1.05755231 | 1.05367747 | 1.05025449 | | SIG
0 | MA=
1.06695332 | 2 1.06195298
2 0.48729462
5 0.48584330 | 1.05755231
0.48712524
0.48357136 | 1.05367747
0.48014350
0.47915768 | 1.05025449
0.48096778
0.47707379 | | \$1G | MA=
1.06695332
0.49496472
0.49172176 | 2 1.06195298
2 0.48729462
5 0.48584330
6 0.48001831 | 1.05755231 | 1.05367747 | 1.05025449 | | 0
1
2
3 | MA=
1.06695332
0.49496472
0.49172176
0.48308366 | 2 1.06195298
2 0.48729462
5 0.48584330
6 0.48001831
7 0.46802541 | 1.05755231
0.48712524
0.48357136
0.47510707 | 1.05367747
0.48014350
0.47915768
0.47341541 | 1.05025449
0.48096778
0.47707379
0.46908995 | | 0
1
2
3
4
5 | MA=
1.06695332
0.49496472
0.49172176
0.48308366
0.47084627 | 2 1.06195298
2 0.48729462
6 0.48584330
0.48001831
7 0.46802541
0.45097436 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890 | | 0
1
2
3 | MA=
1.06695332
0.49496472
0.49172176
0.48308366
0.47084627
0.45525120 | 2 1.06195298
2 0.48729462
5 0.48584330
6 0.48001831
7 0.46802541
0.45097436
0.43110753 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020 | | 0
1
2
3
4
5 | MA=
1.06695332
0.49496472
0.49172176
0.48308366
0.47084627
0.45525120 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
0 0.45097436
3 0.43110753
0 0.40841750 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162 |
1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108 | | SIG
0
1
2
3
4
5
6
7
8 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.45525120 0.43523386 0.41070501 0.38335625 | 2 1.06195298
2 0.48729462
6 0.48584330
0.48001831
7 0.46802541
0 0.45097436
3 0.43110753
1 0.40841750
0 0.38177537
0 0.35225981 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669 | | SIG
0
1
2
3
4
5
6
7 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.45525120 0.43523388 0.41070501 0.38335625 | 2 1.06195298
2 0.48729462
6 0.48584330
0.48001831
7 0.46802541
0 0.45097436
3 0.43110753
1 0.40841750
0 0.38177537
0 0.35225981 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.37969615 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.37686704 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969 | | 0
1
2
3
4
5
6
7
8
9 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.4708427 0.45525120 0.43523388 0.41070501 0.38335628 0.35475121 0.32467949 | 2 1.06195298
2 0.48729462
6 0.48584330
0.48001831
7 0.46802541
0 0.45097436
3 0.43110753
1 0.40841750
0 0.38177537
0 0.35225981
0 0.32224650
0 0.29182943 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.37969615
0.35144384
0.32052511
0.28991479 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.37686704
0.34976881 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969
0.34748683 | | 0
1
2
3
4
5
6
7
8
9 | MA= 1.06695332 0.49496472 0.49172172 0.48308366 0.47084523388 0.41070501 0.38335625 0.35475121 0.32467945 0.29246405 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
0.46802541
0.45097436
3 0.43110753
1 0.40841750
5 0.38177537
1 0.35225981
9 0.32224650
0.29182943
0.25961015 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.37969615
0.35144384
0.32052511
0.28991479
0.25959835 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.445047195
0.40323019
0.37686704
0.37686704
0.34976881
0.32024843
0.28855380
0.25825883 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969
0.37586969
0.31917509
0.28862453
0.25691124 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.06695333 0.49496472 0.49172176 0.48308366 0.47084527 0.43523388 0.41070501 0.38335650 0.35475121 0.32467949 0.29246409 0.25929665 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
8 0.43110753
1 0.40841750
8 0.38177537
1 0.35225981
9 0.32224650
9 0.29182943
0.25961015
0.22690128 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.37969615
0.37969615
0.35144384
0.32052511
0.28991479
0.25959835
0.22748879 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.445047195
0.40323019
0.40323019
0.40323019
0.40323019
0.327686704
0.34976881
0.32024843
0.28855380
0.25825883
0.22821687 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.40149669
0.34748683
0.31917509
0.28862453
0.25691124
0.22774030 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.06695333 0.49496472 0.49172176 0.48308366 0.47084627 0.43523388 0.41070501 0.3833562121 0.32467949 0.29246409 0.25929665 0.19820936 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
8 0.43110753
1 0.40841750
8 0.38177537
1 0.35225981
9 0.32224650
9 0.29182943
0.25961015
0.22690128
0.19700445 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.35144384
0.32052511
0.28991479
0.25959835
0.22748879
0.19602659 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.32024843
0.32024843
0.28855380
0.25825883
0.22821687
0.19631886 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969
0.34748683
0.31917509
0.28862453
0.25691124
0.22774030
0.19751273 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.43525388 0.41070501 0.3833562120 0.32467949 0.29246409 0.25929668 0.22767876 0.19820936 0.16856854 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
8 0.43110753
8 0.43110753
8 0.40841750
9 0.38177537
1 0.35225981
9 0.32224650
9 0.29182943
0 0.29182943
0 0.25961015
0 0.22690128
0 0.16943235 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.35144384
0.32052511
0.28991479
0.25959835
0.22748879
0.19602659
0.16887750 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.32024843
0.32024843
0.28855380
0.25825883
0.25825883
0.22821687
0.19631886
0.16763961 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40138969
0.33784969
0.34748683
0.31917509
0.28862453
0.25691124
0.22774030
0.19751273
0.16692671 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.43523388 0.41070501 0.38335625 0.35475121 0.32467949 0.29246409 0.25929665 0.22767876 0.19820936 0.16856854 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48501831
7 0.46802541
8 0.43110753
8 0.43110753
9 0.38177537
1 0.35225981
9 0.32224650
9 0.29182943
9 0.2928961015
9 0.22690128
0.16943235
0.13981063 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.375645
0.35144384
0.32052511
0.28991479
0.25959835
0.22748879
0.19602659
0.16887750
0.14201574 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.376881
0.32024843
0.28855380
0.25825883
0.25825883
0.22821687
0.19631886
0.16763961
0.14306659 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969
0.37586963
0.31917509
0.28862453
0.25691124
0.22774030
0.19751273
0.16692671
0.14271937 | | SIG
01234567891011213141516 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.45525120 0.43523388 0.41070501 0.38335625 0.35475121 0.32467949 0.25929665 0.22767876 0.19820936 0.10828005 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
8 0.43110753
8 0.43110753
8 0.43110753
9 0.38177537
1 0.35225981
1 0.35225981
1 0.32224650
1 0.22690128
1 0.22690128
1 0.16943235
1 0.13981063
1 0.10871715 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.375645
0.35144384
0.32052511
0.28791479
0.25959835
0.22748879
0.19602659
0.16887750
0.14201574
0.11047401 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.37686704
0.34976881
0.32024843
0.22821687
0.19631886
0.16763961
0.14306589
0.11317490 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.375849683
0.31917509
0.28862453
0.25691124
0.22774030
0.19751273
0.16692671
0.14271937
0.11608559 | | SIG
01234567891011211314151617 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.45525120 0.43523388 0.41070501 0.38335625 0.35475121 0.32467949 0.25929665 0.22767876 0.19820936 0.16856854 0.13733215 0.10828005 0.08876234 | 2 1.06195298
2 0.48729462
6 0.48584330
6 0.48001831
7 0.46802541
8 0.43110753
8 0.43110753
9 0.38177537
1 0.35225981
1 0.35225981
1 0.32224650
1 0.22690128
1 0.22690128
1 0.16943235
1 0.16943235
1 0.10871715
1 0.08617254 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.3776615
0.35144384
0.32052511
0.28991479
0.25959835
0.22748879
0.19602659
0.16887750
0.14201574
0.11047401
0.08384426 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.37686704
0.34976881
0.32024843
0.25825883
0.22821687
0.19631886
0.16763961
0.14306689
0.11317490
0.05236383 |
1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37586969
0.34748683
0.31917509
0.25691124
0.22774030
0.19751273
0.16692671
0.14271937
0.11608559
0.00212665 | | SIG
01234567891011213141516 | MA= 1.06695332 0.49496472 0.49172176 0.48308366 0.47084627 0.45525120 0.43523388 0.41070501 0.38335625 0.35475121 0.32467949 0.25929665 0.22767876 0.19820936 0.10828005 | 2 1.06195298
2 0.48729462
0.48584330
0.48501831
0.46802541
0.45097436
0.43110753
0.40841750
0.38177537
0.35225981
0.35225981
0.32224650
0.29182943
0.25961015
0.22690128
0.19700445
0.16943235
0.13981063
0.10871715
0.08617254
0.08137406 | 1.05755231
0.48712524
0.48357136
0.47510707
0.46406604
0.44890711
0.42841162
0.40486375
0.375645
0.35144384
0.32052511
0.28791479
0.25959835
0.22748879
0.19602659
0.16887750
0.14201574
0.11047401 | 1.05367747
0.48014350
0.47915768
0.47341541
0.46098979
0.44502314
0.42647195
0.40323019
0.37686704
0.34976881
0.32024843
0.22821687
0.19631886
0.16763961
0.14306589
0.11317490 | 1.05025449
0.48096778
0.47707379
0.46908995
0.45892890
0.44317020
0.42319108
0.40149669
0.37584683
0.31917509
0.28862453
0.25691124
0.22774030
0.19751273
0.16692671
0.14271937
0.11608559 | 16 SIGMA= 1.04721802 1.04451090 1.04208593 1.03990299 1.03792956 0.47477051 0.50242245 0.53160740 0.48810672 0.51711853 0.47404151 0.47297329 0.47225343 0.47175985 0.47141477 0.46786747 0.46065803 0.45338977 0.44625440 0.43941096 0.45556470 0.45798895 0.46084542 0.46394268 0.46709255 0.43748052 0.44099386 0.4341745B 0.43103651 0.42808977 0.42194027 0.41835506 0.41475213 0.41126682 0.40795740 0.39884261 0.40053540 0.40500452 0.40268736 0.40736742 0.36701679 0.35982548 0.37458679 0.37078089 0.36334061 0.34679068 0.34570875 0.34461714 0.34360400 0.34266869 0.31727742 0.31846229 0.31999235 0.32165501 0.32334479 0.28836031 0.28509336 0.28167267 0.27824987 0.27492838 10 0.25688121 0.25783826 0.25684744 0.25990124 0.26094858 0.22823667 0.22897291 0.22644210 0:22686504 0.22751821 12 13 0.19830174 0.19367452 0.19111797 0.19614584 0.18856498 14 0.16740298 0.16981734 0.17240639 0.17502923 0.17759268 15 0.14149942 0.13988316 0.13912796 0.14066034 0.13841323 16 0.11841383 0.11818792 0.11749617 0.11658698 0.11556346 0.08323044 0.09090481 17 0.08689640 0.09496592 0.09893854 18 0.06665693 0.08167824 0.05698076 0.05262657 0.04854145 0.09934300 19 0.10113413 0.10082333 0.10015436 0.09852423 0.13035724 20 0.14015575 0.15027758 0.16070776 0.17142924 NBAR= 17 20 SIGMA= 1.03613737 1.03450353 0.54554288 0.55872426 0.47116653 0.47098030 0.43294177 0.42688742 0.47017850 0.47313008 0.42534246 0.42279414 0,40484851 0.40194957 0.40968649 0.41190728 0.35650914 0.35340849 0.34180523 0.34100792 0.32500072 0.32458574 0.26878460 10 0.27176330 0.26195974 0.26291727 0.22969932 0.23039883 12 13 0.18613727 0.18381129 0.18004552 0.18235872 15 0.13774737 0.13713400 0.11449264 0.11341875 0.10274273 0.10633313 0.04502254 18 0.04175248 19 0.09774604 0.09701036 ٧ THE RESERVE THE PROPERTY OF TH 15 17 18 NPAR= 20 0.16243346 0.19370625 14 #### DB=45 A= 1.86973822 | NBA | R= 5 | 6 | 7 | 8 | 9 | |---|--|--|--|---|---| | SIG | HA= | | | | | | | 1.07588492 | 1.07484736 | 1.07114387 | 1.06673692 | 1.06235391 | | ٥. | 0.56674220 | 0.56562542 | 0.56318391 | 0.55782813 | 0.55528440 | | 1 | 0.56345216 | 0.56238545 | 0.55975012 | 0.55487936 | 0.55173395 | | 2 | 0.55366403 | 0.55272572 | 0.54968235 | 0.54583845 | 0.54167385 | | 3 | 0.53762921 | 0.53684479 | 0.53355707 | 0.53044967 | 0.52616218 | | 4 | 0.51578016 | 0.51512124 | 0.51202711 | 0.50899083 | 0.50562037 | | 5 | 0.48873558 | 0.48814849 | 0.48563985 | 0.48242513 | 0.47993018 | | 6 | 0.45728595 | 0.45673201 | 0.45488656 | 0.45191723 | 0.44951796 | | 7 | 0.42235196 | 0.42183489 | 0:42041839 | 0.41827181 | 0.41574033 | | 8 | 0.38491987 | 0.38448390 | 0.38320761 | 0.38194668 | 0.37995131 | | 9 | 0.34596891 | 0.34566951 | 0.34447046 | 0.34359960 | 0.34266398 | | 10 | 0.30641205 | 0.30627773 | 0.30537476 | 0.30445467 | 0.30412720 | | 11 | 0.26706912 | 0.267)7841 | 0.26675490 | 0.26594041 | 0.26544391 | | 12 | 0.22868067 | 0.22876914 | 0.22907494 | 0.22892075 | 0.22833656 | | 13 | 0.19195508 | 0.19204893 | 0.19269093 | 0.19342037 | 0.19359727 | | 14 | 0.15762778 | 0.15768440 | 0.15821884 | 0.15930621 | 0.16049911 | | 15 | 0.12650367 | 0.12653480 | 0.12671593 | 0.12732907 | 0.12852596 | | 16 | 0.09945726 | 0.09952076 | 0.09951741 | 0.09940943 | 0.09951319 | | 17 | 0.07737853 | 0.07754284 | 0.07783122 | 0.07771617 | 0.07714968 | | 18 | 0.06107123 | 0.06137289 | 0.06237326 | 0.06330989 | 0.06379998 | | 19 | 0.05112817 | 0.05154659 | 0.05328179 | 0.05562927 | 0.05820613 | | 20 | 0.04781840 | 0.04828201 | 0.05032377 | 0.05331382 | 0.05694421 | | | | | | | | | | | | | | | | NBA | R= 10 | 11 | 12 | 13 | 14 | | | MA= | | | | | | | - | 11
1.05451864 | 12
1.05114536 | 13 | 14 | | | MA= | | | | 1.04537946
0.53737841 | | SIG
O
1 | MA=
1.05825564
0.54970810
0.54707132 | 1.05451864
0.54798786
0.54429836 | 1.05114536
0.54285146
0.54051848 | 1.04811019
0.54192271
0.53807337 | 1.04537946
0.53737841
0.53523192 | | SIG
0
1
2 | MA=
1.05825564
0.54970810
0.54707132
0.53848076 | 1.05451864
0.54798786
0.54429836
0.53442019 | 1.05114536
0.54285146
0.54051848
0.53211811 | 1.04811019
0.54192271
0.53807337
0.52854000 | 1.04537946
0.53737841
0.53523192
0.52671315 | | \$IG
0
1
2
3 | MA=
1.05825564
0.54970810
0.54707132
0.53848076
0.52320719 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187 | | SIG
0
1
2
3 | MA=
1.05825564
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828 | | SIG
0
1
2
3
4
5 | MA=
1.05825564
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012
0.47664595 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205763 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828
0.46782212 | | SIG
0
1
2
3
4
5
6 | MA* 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861 | | SIG
0
1
2
3
4
5
6
7 | MA#
1.05825564
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41413969 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.40894930 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.40766691 | | SIG
0
1
2
3
4
5
6
7
8 | HA#
1.05825564
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41413969
0.37811712 |
1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.45442014
0.46936405
0.44110198
0.40894930
0.37403676 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.40766691
0.37322291 | | SIG
0
1
2
3
4
5
6
7
8
9 | 1.05825564
0.54970810
0.54970132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41413969
0.37811712
0.34105522 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.47412581
0.41230284
0.37713117
0.33980735 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.449647355
0.447205763
0.44283230
0.41012312
0.37572428
0.33931077 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161182
0.49282212
0.43894861
0.40766691
0.37322291
0.33710044 | | SIG
0
1
2
3
4
5
6
7
8
9 | 1.05825564
0.54970810
0.54970132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41413969
0.37811712
0.34105522
0.30359605 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49647355
0.47205763
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.4942014
0.49436405
0.44110198
0.40894930
0.37403676
0.33841127
0.30139099 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49722528
0.49782212
0.43894861
0.40766691
0.37322291
0.33710044
0.30107763 | | SIG
0
1
2
3
4
5
6
7
8
9
10 | 1.05825564
0.54970810
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41413969
0.37811712
0.34105522
0.30359605
0.26556896 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205763
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.26476719 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.30139099
0.26401999 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43594861
0.40766691
0.40766691
0.37302291
0.33710044
0.30107763
0.26396549 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | 1.05825564
0.54970810
0.54707132
0.53848076
0.52320719
0.50209012
0.47664595
0.44734539
0.41734539
0.41734539
0.34105522
0.30359605
0.26556896
0.22808086 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205763
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893222 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.44110198
0.37403676
0.33841127
0.30139099
0.26401999
0.22873983 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43784861
0.40764691
0.40764691
0.37302291
0.3730244
0.30107763
0.26396549
0.22810952 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.47464595 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44425634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47203783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.26476719
0.22893222
0.19329310 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.401999
0.37403676
0.33841127
0.30139099
0.26401999
0.22873983
0.19407945 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.438948691
0.438948691
0.37322291
0.33710044
0.30107763
0.26394549
0.22810932
0.19462824 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.414134539 0.37811712 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893222
0.19329310
0.16079236 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.4081999
0.37403676
0.33841127
0.30139099
0.26401999
0.22873983
0.19407945
0.16066197 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.4922528
0.46782212
0.43894869
0.438948691
0.33710044
0.37322291
0.33710044
0.30107763
0.26394549
0.22810952
0.19462824
0.16113092 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.414134539 0.37811712 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 0.13007404 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536
0.13147520 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.337572428
0.337572428
0.33931077
0.30152927
0.22893222
0.19329310
0.16079236
0.13227550 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.47442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.30139099
0.22873983
0.19407945
0.16066197
0.13233918 | 1.04537946
0.53737841
0.53323192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.4076691
0.33710044
0.33710044
0.33710044
0.33710044
0.30107763
0.26394549
0.22810952
0.19462824
0.16113092
0.13193349 | | SIG
0 1
2 3
4 5 6 7
8 9
10 11 12 13 14 15 16 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.4141379 0.37811712 0.334105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 0.13007404 0.10013582 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536
0.13147520
0.10137360 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893222
0.19329310
0.16079236
0.13227550
0.10305741 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.47442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.30135099
0.22873983
0.19407945
0.16066197
0.13233918
0.10482315 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.4076667
0.37322291
0.37322291
0.33710044
0.30107763
0.26394549
0.22810932
0.19462824
0.16113092
0.13193349
0.10626482 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.41413969 0.37811712 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 0.13007404 0.10013582 0.07633279 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536
0.13147520
0.10137360
0.07557763 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893202
0.19329310
0.16079236
0.13227550
0.10305741
0.07518848 |
1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.47442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.303841127
0.139099
0.22873983
0.19407945
0.16066197
0.13233918
0.10482315
0.07538484 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.40766691
0.33710244
0.30107763
0.26394549
0.12810932
0.19462824
0.16113092
0.13193349
0.10628482
0.10628482 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.41413969 0.37811712 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 0.13007404 0.10013582 0.07633279 0.06367046 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536
0.13147520
0.10137360
0.07557763
0.06288650 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893222
0.19329310
0.16079236
0.13227550
0.10305741
0.07518948
0.06151280 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.49442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.33841127
0.3066197
0.22873983
0.19407945
0.16066197
0.13233918
0.10482315
0.07538484
0.05968540 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.4922528
0.46782212
0.43894861
0.40766691
0.37322291
0.33710044
0.30107763
0.26394549
0.12810932
0.19462824
0.16113092
0.13193349
0.10628482
0.07623482
0.07623482 | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 1.05825564 0.54970810 0.54707132 0.53848076 0.52320719 0.50209012 0.47664595 0.44734539 0.41413969 0.37811712 0.34105522 0.30359605 0.26556896 0.22808086 0.19322499 0.16119502 0.13007404 0.10013582 0.07633279 | 1.05451864
0.54798786
0.54429836
0.53442019
0.51973185
0.49972151
0.47412581
0.44456634
0.41230284
0.37713117
0.33980735
0.30241739
0.26551177
0.22848252
0.19294695
0.16117536
0.13147520
0.10137360
0.07557763 | 1.05114536
0.54285146
0.54051848
0.53211811
0.51680471
0.49649355
0.47205783
0.44283230
0.41012312
0.37572428
0.33931077
0.30152927
0.22893202
0.19329310
0.16079236
0.13227550
0.10305741
0.07518848 | 1.04811019
0.54192271
0.53807337
0.52854000
0.51450460
0.47442014
0.46936405
0.44110198
0.40894930
0.37403676
0.33841127
0.303841127
0.139099
0.22873983
0.19407945
0.16066197
0.13233918
0.10482315
0.07538484 | 1.04537946
0.53737841
0.53523192
0.52671315
0.51161187
0.49225828
0.46782212
0.43894861
0.40766691
0.33710244
0.30107763
0.26394549
0.12810932
0.19462824
0.16113092
0.13193349
0.10628482
0.07623482 | ``` NBAR= 15 16 17 18 19 SIGMA= 1.04291749 1.04069202 1.03867352 1.03683721 1.03516048 0.54335315 0.54988980 0.55671884 0.56354234 0.57017747 0.53212635 0.53091745 0.53354137 0.52986702 0.52894028 0.51225075 0.50355986 0.52179053 0.51694464 0.50777818 0.51189542 0.51247708 0.51326437 0.51415634 0.51508689 0.48946825 0.48687012 0.48442990 0.48215155 0.48003212 0.46244777 0.45529175 0.46510348 0.45991491 0.45752749 5 0.43918716 0.43968069 0.44032853 0.44105184 0.44180065 0.40508873 0.40258490 0.40016692 0.39786715 0.39570026 0.36954618 8 0.37223137 0.37126599 0.37037191 0.36878303 0.33931291 0 0.33745429 0.33800320 0.33864061 0.33998790 10 0.29917624 0.29721248 0.29525710 0.29336047 0.29154950 0.26542664 0.26442896 0.26491537 0.26593796 0.26643459 11 0.22839012 0.22962075 0.22878107 0.22919868 0.23003448 12 0.18987889 0.19359631 0.19239383 13 0.19113638 0.18865347 0.16260184 0.16413852 0.16567673 0.16717273 14 0.16860280 15 0.13171628 0.13151125 0.13129710 0.13108521 0.13089193 0.10633891 0.10586458 0.10549262 0.10616366 0.10508258 16 17 0.07840491 0.08072177 0.08304686 0.08531390 0.08748526 18 0.05527131 0.05304681 0.05096011 0.04903016 0.04726101 0.06806477 19 0.06836411 0.06833269 0.06821030 10.04792020 0.09774330 20 0.08615370 0.09185563 0.10380437 0.11003214 ``` The first of the second of the second A Charles of the second second #### NBAR= 20 #### SIGMA= 1.03362481 - 0 0.57651182 1 0.52811184 2 0.49961015 3 0.51601271 4 0.47806572 5 0.45320762 - 6 0.44254243 7 0.39367225 8 0.36807712 - 9 0.34064498 10 0.28983918 - 11 0.26690753 12 0.23043187 - 13 0.18747998 - 14 0.16995336 - 15 0.13069109 - 16 0.10465715 - 17 0.08953924 18 0.04564873 - 19 0.06777747 - 20 0.11641807 DR=50 | NEA | R= 6 | 7 | .8 | 9 | 10 | |---|--|--|---|--|--| | SIG | MA= | | | | | | | 1.06358004 | 1.06282659 | 1.06037748 | 1.05734897 | 1.05422182 | | 0 | 0.62049161 | 0.61986933 | 0.61695402 | 0.61451882 | 0.61048058 | | 1 | 0.61644284 | 0.61580020 | 0.61306928 | 0.61039788 | 0.60680676 | | 2 | 0.60444406 | 0.60376234 | 0.60143553 | 0.39838840 | 0.59554626 | | 3 | 0.58492064 | 0.58422900 | 0.58223502 | 0.57922680 | 0.57660101 | | 4 | 0.55853349 | 0.55789539 | 0.55602732 | 0.55353721 | 0.55077451 | | 5 | 0.52613139 | 0.52560318 | 0.52379073 | 0.52182657 | 0.51933347 | | 6 | 0.48871496 | 0.48831100 | 0.48671095 | 0.48495704 | 0.48315642 | | 7 | 0.44741316 | 0.44710542 | 0.44592401 | 0.44428588 | 0.44293938 | | 8 | 0.40345672 | 0.40320732 | 0.40246894 | 0.40122573 | 0.39995443 | | 9 | 0.35812801 | 0.35792542 | 0.35745375 | 0.35682249 | 0.35582270 | | 10 | 0.31268054 | 0.31254782 | 0.31217533 | 0.31195516 | 0.31160791 | | 11 | 0.26824503 | 0.26821328 | 0.26796966 | 0.26780793 | 0.26790546 | | 12 | 0.22575917 | 0.22583007 | 0.22588299 | 0.22577762 | 0.22581174 | | 13
14 | 0.18595731
0.14943292 | 0.18608883 | 0.18649827 | 0.18677405 | 0.18682221
0.15145753 | | | 0.11674820 | 0.14956301
0.11683876 | 0.15013637 | 0.15088288
0.11805820 | 0.15145/53 | | 15
16 | 0.08853500 | 0.08860023 | 0.11727571
0.08879388 | 0.11803820 | 0.08972648 | | 17 | 0.06552686 | 0.06562142 | 0.06579110 | 0.06583318 | 0.06576412 | | 18 | 0.04848931 | 0.04866407 | 0.04915584 | 0.04959603 | 0.04980125 | | 19 | 0.03806376 | 0.03832340 | 0.03926267 | 0.04052879 | 0.04191515 | | 20 | 0.03458503 | 0.03488039 | 0.03602535 | 0.03771226 | 0.03977744 | | | | | | | | | | | | | | | | NBA | R= 11 | 12 | 13 | 14 | 15 | | | | 12 | 13 | 14 | 15 | | nba
Sig | MA= | | | - ' | | | | | 12 | 13
1.04576011 | 14 | 15
1.04116836 | | SIG | MA=
1.05120249 | 1.04837343 | 1.04576011 | - ' | 1.04116836 | | | MA= | | | 1.04336266 | | | SIG
0
1 | MA=
1.05120249
0.60822092 | 1.04837343 | 1.04576011 | 1.04336266 | 1.04116836 | | SIG | MA=
1.05120249
0.60822092
0.60405281 | 1.04837343
0.60427428
0.60081046 | 1.04576011
0.60252865
0.59830212 | 1.04336266
0.59897440
0.59565557 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468 | | 910
0
1
2
3 | MA=
1.05120249
0.60822092
0.60405281
0.59222222
0.57366016
0.54850759 | 1.04837343
0.60427428
0.60081046
0.58978541 | 1.04576011
0.60252865
0.59830212
0.58674606 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815 | | SIG
0
1
2
3
4
5 | MA=
1.05120249
0.60822092
0.60405281
0.59222222
0.57366016
0.54850759
0.51715068 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444 | 1.04576011
0.60252865
0.59830212
0.58674606
0.56870830
0.54375970
0.51295088 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690 | | SIG
0
1
2
3
4
5
6 | MA=
1.05120249
0.60822092
0.60405281
0.59222222
0.57366016
0.54850759
0.51715068
0.48101646 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569 | 1.04576011
0.60252865
0.59830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662 |
1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768 | | SIG
0
1
2
3
4
5
6
7 | MA=
1.05120249
0.60822092
0.60405281
0.59222222
0.57366016
0.54850759
0.51715068
0.48101646
0.44143675 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108 | 1.04576011
0.60252865
0.59830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.43560002 | | SIG
0
12
3
4
5
6
7
8 | MA= 1.05120249 0.60822092 0.60405281 9.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.574501962
0.51519444
0.47939569
0.43976108
0.39793032 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319
0.39667663 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.51134914
0.47601662
0.43743134
0.39589099 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.43560002
0.39502814 | | SIG
0123456789 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108
0.39793032
0.35446857 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.55475970
0.51295088
0.47779802
0.43861319
0.39667663
0.35376663 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.5357815
0.50917690
0.47552768
0.43560002
0.39502814
0.35283623 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.05120249 0.60822092 0.60405281 0.5922222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.545819424
0.51519424
0.47939569
0.43976108
0.39793032
0.35446857
0.31038832 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51275088
0.47779802
0.43861319
0.39667663
0.35376663
0.31022012 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.51134914
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560 | | SIG
0
1
2
3
4
5
6
7
8
9
10 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 0.26790315 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108
0.39793032
0.35446857
0.31038832
0.26755052 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319
0.39667663
0.35376663
0.31022012
0.26718978 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560
0.26743159 | | SIG
0123456789101112 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 0.26790315 0.22614824 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108
0.39793032
0.35446857
0.31038832
0.26755052
0.22649568 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319
0.39667663
0.35376663
0.31022012
0.26718978
0.22650580 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.2628102 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560
0.26743159
0.22652460 | | SIG
012345678910111213 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.48101646 0.48101646 0.3199317 0.26790315 0.22614824 0.18691015 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108
0.39793032
0.35446857
0.31038832
0.26755052
0.22649568
0.18729295 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319
0.39667663
0.35376663
0.35376663
0.35376663
0.35376663
0.35376663
0.35376663
0.35376663 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560
0.26743159
0.22652460
0.18793951 | | SIG
01234567891011121314 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.48101646 0.48101646 0.3199317 0.26790315 0.22614824 0.18691015 0.15170324 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43793032
0.35446857
0.31038832
0.26755052
0.22649568
0.18729295
0.15176380 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43861319
0.39667663
0.35376663
0.35376663
0.35376663
0.31022012
0.26718978
0.22650580
0.18788147
0.15193838 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054
0.15240327 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.47552768
0.435283623
0.30886560
0.26743159
0.22652460
0.18793951
0.15337200 | | SIG
012345678910112131415 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 0.26790315 0.22614824 0.18691015 0.15170324 0.11999746 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.439793032
0.35446857
0.31038832
0.26755052
0.26755052
0.22649568
0.18729295
0.15176380
0.12065004 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43867663
0.35376663
0.35376663
0.35376663
0.31022012
0.26718978
0.22650580
0.18788147
0.15193838
0.12092511 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054
0.15240327
0.12094894 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560
0.26743159
0.22652460
0.18793951
0.15337200
0.12105848 | | SIG
01234567891011213141516 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 0.26790315 0.22614824 0.18691015 0.15170324 0.11999746 0.09061450 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.439793032
0.35446857
0.31038832
0.26755052
0.26755052
0.22649568
0.18729295
0.15176380
0.12065004
0.09171674 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.437667663
0.35376663
0.35376663
0.35376663
0.31022012
0.26718978
0.22650580
0.18788147
0.15193838
0.12092511
0.09285158 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054
0.15240327
0.12094894
0.09381050 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.43560002
0.39502814
0.35283623
0.35283623
0.36886560
0.26743159
0.22652460
0.18793951
0.15337200
0.12105848
0.09404666 | | SIG
012345678910112131415 | MA= 1.05120249 0.60822092 0.60405281 0.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.31093117 0.26790315 0.22614824 0.18691015 0.15170324 0.11999746 |
1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.439793032
0.35446857
0.31038832
0.26755052
0.26755052
0.22649568
0.18729295
0.15176380
0.12065004 | 1.04576011
0.60252865
0.57830212
0.58674606
0.56870830
0.54375970
0.51295088
0.47779802
0.43867663
0.35376663
0.35376663
0.35376663
0.31022012
0.26718978
0.22650580
0.18788147
0.15193838
0.12092511 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054
0.15240327
0.12094894 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.47552768
0.43560002
0.39502814
0.35283623
0.30886560
0.26743159
0.22652460
0.18793951
0.15337200
0.12105848 | | SIG
0123456789101121314151617 | MA= 1.05120249 0.60822092 0.60405281 9.59222222 0.57366016 0.54850759 0.51715068 0.48101646 0.44143675 0.39905086 0.35496485 0.35496485 0.35496485 0.35496485 0.1993117 0.26790315 0.22614824 0.18691015 0.15170324 0.11999746 0.09061450 0.06570359 | 1.04837343
0.60427428
0.60081046
0.58978541
0.57100281
0.54581962
0.51519444
0.47939569
0.43976108
0.39793032
0.35446857
0.31038832
0.26755052
0.22649568
0.18729295
0.15176380
0.12065004
0.09171674
0.06579602 | 1.04576011 0.60252865 0.57830212 0.58674606 0.56870830 0.54375970 0.51295088 0.47779802 0.43861319 0.39667663 0.35376663 0.35376663 0.31022012 0.26718978 0.22650580 0.18788147 0.15193838 0.12092511 0.09285158 0.06615596 | 1.04336266
0.59897440
0.59565557
0.58468184
0.56616657
0.54170441
0.51134914
0.47601662
0.43743134
0.39589099
0.35286023
0.30995766
0.26717946
0.22628102
0.18833054
0.15240327
0.12094894
0.09381050
0.06682560 | 1.04116836
0.60101244
0.59368727
0.58106349
0.56535468
0.53937815
0.50917690
0.47552768
0.43560002
0.39502814
0.35283623
0.35283623
0.36886560
0.26743159
0.22652460
0.18793951
0.15337200
0.12105848
0.09404666
0.06816203 | | NBA | R= | 16 | 17 | 18 | 19 | 20 | |-----|-----|---------|------------|------------|------------|------------| | SIG | HA= | | | | | | | | 1.0 | 3916097 | 1.03732242 | 1.03563626 | 1.03408615 | 1.03265815 | | 0 | 0.6 | 0339662 | 0.60601406 | 0.60871591 | 0.61140496 | 0.61401757 | | 1 | 0.5 | 9193609 | 0.59034501 | 0.58894599 | 0.58765589 | 0.58647654 | | 2 | 0.5 | 7756407 | 0.57421029 | 0.57103108 | 0.56803733 | 0.56523182 | | 3 | 0.5 | 6475742 | 0.56433301 | 0.56402846 | 0.56380575 | 0.56363799 | | 4 | 0.5 | 3721300 | 0.53518584 | 0.53329484 | 0.53153411 | 0.52989680 | | 5 | 0.5 | 0708975 | 0,50511415 | 0.50325813 | 0.50152106 | 0.49989973 | | 6 | 0.4 | 7520671 | 0.47500664 | 0.47488697 | 0.47481989 | 0.47478599 | | 7 | 0.4 | 3384123 | 0.43215569 | 0.43055736 | 0.42905150 | 0.42763941 | | 8 | 0.3 | 9419888 | 0.39342716 | 0.39271078 | 0.39204548 | 0.39142731 | | 9 | 0.3 | 5292131 | 0.35306429 | 0.35323895 | 0.35342874 | 0.35362254 | | 10 | 0.3 | 0774786 | 0.30663698 | 0.30555770 | 0.30452342 | 0.30354192 | | 11 | 0.2 | 6768930 | 0.26795741 | 0.26822462 | 0.26848415 | 0.26873178 | | 12 | 0.2 | 2681394 | 0.22710807 | 0.22739736 | 0.22767656 | 0.22794243 | | 13 | 0.1 | 8745092 | 0.18692168 | 0.18637942 | 0.18584114 | 0.18531795 | | 14 | 0.1 | 5435567 | 0.15532628 | 0.15626396 | 0.15715832 | 0.15800352 | | 15 | 0.1 | 2115750 | 0.12123470 | 0.12129694 | 0.12134888 | 0.12139386 | | 16 | 0.0 | 9414685 | 0.09417261 | 0.09414869 | 0.09409242 | 0.09401607 | | 17 | 0.0 | 6955459 | 0.07093832 | 0.07228264 | 0.07357026 | 0.07479104 | | 18 | 0.0 | 4586558 | 0.04495447 | 0.04410061 | 0.04330919 | 0.04258104 | | 19 | 0.0 | 4699586 | 0.04713741 | 0.04725669 | 0.04736503 | 0.04746236 | | 20 | 0.0 | 5662047 | 0.05992161 | 0.06332935 | 80828660.0 | 0.07044165 | DR=55 | NBA | R= 7 | 8 | 9 | 10 | 11 | |---|--|---|--|---|--| | SIG | IHA= | | | | | | | 1.05395046 | 1.05355251 | 1:05195662 | 1.04986355 | 1.04761215 | | 0 | 0.67445851 | 0.67397983 | 0.67242963 | 0.66974561 | 0.66759291 | | 1 | 0.66964206 | 0.66918526 | 0.66757004 | 0.66508379 | 0.66272765 | | 2 | 0.65536100 | 0.65495440 | 0.45325211 | 0.65112681 | 0.64956144 | | 3 | 0.63212270 | 0.63176435 | 0.63013272 | 0.62817504 | 0.62586869 | | 4 | 0.60076882 | 0.60044188 | 0.59905516 | 0.59714458 | 0.59525812 | | 5 | 0.56243921 | 0.56213948 | 0.56101569 | 0.55933552 | 0.55762149 | | é | 0.51849636 | 0.51824155 | 0.51726563 | 0.51602250 | 0.51447190 | | 7 | 0.47043050 | 0.47024239 | 0.46942483 | 0.46848634 | 0.46737312 | | 8 | 0.41977883 | 0.41965965 | 0.41906748 | 0.41829325 | 0.41759988 | | 9 | 0.36807424 | 0.36800443 | 0.36770231 | 0,36715956 | 0.36662384 | | 10 | 0.31680526 | 0.31676465 | 0.31667785 | 0.31650840 | 0.31617009 | | 11
12 | 0.26735272 | 0.26734013 | 0.26733877 | 0.26744258 | 0.26750495 | | | 0.22087252 | 0.22092075 | 0.22098420 | 0.22113114 | 0.22142498 | | 13 | 0.17830184 | 0.17837351 | 0.17858849 | 0.17878099 | 0.17901392 | | 14
15 | 0.14013701 | 0.14022979 | 0.14061281 | 0.14103618 | 0.14135808 | | 16 | 0.10072002 | 0.10680723 | 0.10720921 | 0.10780926 | 0.108443/3 | | 17 | 0.05540965 | 0.07840559
0.05545639 | 0.07866132
0.05559873 | 0.07909774 | 0.05592308 | | 18 | 0.03845595 | 0.03343637 | 0.03539673 | 0.05374772 | 0.03372308 | | 19 | 0.03843343 | 0.03832842 | 0.02846023 | 0.02932666 | 0.03711778 | | 20 | 0.02459328 | 0.02472366 | 0.02533065 | 0.02625523 | 0.03740707 | | | 010243/320 | 0.02472300 | 0.02333063 | 0.02023323 | 0.02/40/0/ | | | | | | | | | NBA | R= 12 | 13 | 14 | 15 | 16 | | | | 13 | 14 | 15 | 16 | | NBA
SIG | | 13
1.04320851 | 14 | 15
1.03926584 | 16
1.03749459 | | | MA= | | | | | | SIG | MA=
1.04536751 | 1.04320851 | 1.04117076 | 1.03926584 | 1.03749459 | | \$1G | MA=
1.04536751
0.66455099 | 1.04320851 | 1.04117076 | 1.03926584 | 1.03749459 | | SIG
0 | MA=
1.04536751
0.66455099
0.66004246 | 1.04320851
0.66256347
0.65769381 | 1.04117076
0.65968252
0.65529202 | 1.03926584
0.65970542
0.65327495 | 1.03749459
0.65994792
0.65141679 | | \$1G | MA=
1.04536751
0.66455099
0.66004246
0.64631824 | 1.04320851
0.66256347
0.65769381
0.64375759 | 1.04117076
0.65968252
0.65529202
0.64170331 | 1.03926584
0.65970542
0.65327495
0.63888678 | 1.03749459
0.65994792
0.65141679
0.63617878 | | 0
1
2
3 | MA=
1.04536751
0.66455099
0.66004246
0.64631824
0.62360705 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069 | 1.04117076
0.65968252
0.65529202
0.64170331
0.61928343 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978 | | \$10
0
1
2
3
4 | MA=
1.04536751
0.66455099
0.66004246
0.64631824
0.62360705
0.59309444
0.55594319
0.51310374 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797 | 1.04117076
0.65968252
0.65529202
0.64170331
0.61928343
0.58935165
0.55259608
0.51026430 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362
0.58737472
0.55081601
0.50947854 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001 | | \$1G
0
1
2
3
4
5
6
7 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46512715 | 1.04117076
0.65968252
0.65529202
0.64170331
0.61928343
0.58935165
0.55259608
0.51026430
0.46410765 | 1.03926584
0.65970542
0.65327495
0.6388678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147889 | | SIG
0
1
2
3
4
5
6
7
8 | MA=
1.04536751
0.66435099
0.66004246
0.64631824
0.62360705
0.59309444
0.55594319
0.51310374
0.46612968
0.41676844 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.5511696
0.55410454
0.51172797
0.46512715
0.41585765 |
1.04117076 0.65968252 0.65529202 0.64170331 0.61928343 0.559935165 0.55259608 0.51026430 0.46410765 0.41517986 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362
0.55081601
0.55081601
0.50947854
0.46276625
0.41446634 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.554510978
0.50880001
0.46147899
0.41377912 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.55309434 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.55410454
0.51172797
0.46512715
0.41585765
0.36572557 | 1.04117076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58510978
0.58510978
0.50880001
0.46147889
0.41377912
0.36485299 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.55121696
0.55410454
0.51172797
0.46512715
0.41585765
0.36572557
0.31575753 | 1.04117076 0.65968252 0.65529202 0.64170331 0.61928343 0.55895165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 0.31558358 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362
0.58737472
0.55081401
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.585510978
0.50880001
0.46147889
0.41377912
0.36485299
0.31436657 | | SIG
0
1
2
3
4
5
6
7
8
9
10 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46512715
0.41585765
0.36572557
0.31575753
0.26728193 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.46410765 0.41517986 0.36511390 0.31558358 0.26733338 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.406276625
0.41446634
0.36495450
0.31498194
0.26751142 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.585516978
0.54910978
0.50880001
0.46147889
0.41377912
0.36485299
0.31436657
0.26758596 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46512715
0.41585765
0.36572557
0.31575753
0.26728193
0.22186425 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 0.31558358 0.22187672 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.585516978
0.50880001
0.46147889
0.41377912
0.36485299
0.31436657
0.26756596
0.22237976 | | SIG
01
23
45
67
89
10
11
12
13 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 0.17939114 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.5172797
0.41585765
0.36572557
0.31575753
0.26728193
0.22186425
0.17986651 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 0.36511390 0.31558358 0.22187672 0.18026542 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362
0.58737472
0.55081601
0.50947854
0.40476635
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46187899
0.41377912
0.36485299
0.31436657
0.26758596
0.22237976
0.18012981 | | SIG
01
23
45
67
89
10
11
12
13
14 | MA= 1.04536751 0.66435099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 0.17939114 0.14160635 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.5172797
0.41585765
0.36572557
0.31575753
0.26728193
0.22186425
0.17986651
0.14190956 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46512986 0.36511390 0.31558358 0.22187672 0.18026542 0.14235072 | 1.03926584
0.65970542
0.65327495
0.63888678
0.61798362
0.58737472
0.55081601
0.50947854
0.46635
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.461477912
0.36485299
0.31436657
0.26768596
0.22237976
0.18012981
0.14372316 | | SIG
012345678910112131415 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 0.17939114 0.14160635 0.10897047 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46518715
0.46585765
0.36572557
0.31575753
0.26728193
0.22186425
0.17986651
0.14190956
0.10931895 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46417986 0.41517986 0.36511390 0.31558358 0.22187672 0.18026542 0.14235072 0.10953987 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889
0.10979758 | 1.03749459
0.65994792
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147891
0.46147891
0.36485299
0.31436657
0.26768596
0.22237976
0.18012981
0.14372316
0.11003916 | | SIG
01234567891011213141516 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.59309444 0.55594319 0.51310374 0.46612968 0.4167684 0.3623101 0.3623101 0.3623101 0.3623101 0.126739880 0.22172821 0.17939114 0.14160635 0.10897047 0.08043805 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46518715
0.46585765
0.36572557
0.31575753
0.26728193
0.12186425
0.17986651
0.14190956
0.10931895
0.08119418 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46417986 0.41517986 0.36511390 0.31558358 0.22187672 0.18026542 0.14235072 0.10953987 0.08186430 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889
0.10979758
0.08216327 | 1.03749459
0.65994792
0.65141679
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147891
0.36485299
0.31436657
0.26748596
0.22237976
0.18012981
0.14372316
0.11003916
0.08238865 | | SIG
0123456789101121314151617 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.57309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 0.17939114 0.14160635 0.10897047 0.08043805 0.05617032 | 1.04320851 0.66256347 0.65769381 0.64375759 0.62150069 0.59121696 0.55410454 0.51172797 0.46512715 0.46512715 0.36572557 0.36572557 0.36572557 0.16728193 0.22186425 0.17986651 0.14190958 0.10931895 0.08119418 0.05654288 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 0.31558358 0.22187672 0.18026542 0.14235072 0.10953987 0.08186430 0.05706206 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889
0.10979758
0.06216327
0.05791286 | 1.03749459
0.65994792
0.65141679
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147889
0.41377912
0.36485299
0.31436657
0.26748596
0.22237976
0.18012981
0.14372316
0.11003916
0.08238865
0.05878317 | | SIG
01234567890112314516718 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.57309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.316827756 0.26737880 0.22172821 0.17939114 0.14160635 0.10897047 0.08043805 0.05617032 0.03910084 | 1.04320851
0.66256347
0.65769381
0.64375759
0.62150069
0.59121696
0.55410454
0.51172797
0.46512715
0.46512715
0.36572557
0.36572557
0.31575753
0.26728193
0.22186425
0.17986651
0.14190958
0.10931895
0.008119418
0.05654288
0.03895435 | 1.041.7076 0.65968252 0.65529202
0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.365511390 0.365511390 0.365511390 0.365513308 0.22187672 0.18026542 0.14235072 0.10953987 0.08186430 0.05706206 0.03871475 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.4144634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889
0.10979758
0.08216327
0.05791286
0.03838181 | 1.03749459
0.65994792
0.65141679
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147889
0.41377912
0.36485299
0.36485299
0.36485290
0.22237976
0.18012981
0.14372316
0.11003916
0.08238865
0.05878317
0.03804583 | | SIG
0123456789101121314151617 | MA= 1.04536751 0.66455099 0.66004246 0.64631824 0.62360705 0.57309444 0.55594319 0.51310374 0.46612968 0.41676844 0.36623101 0.31587756 0.26739880 0.22172821 0.17939114 0.14160635 0.10897047 0.08043805 0.05617032 | 1.04320851 0.66256347 0.65769381 0.64375759 0.62150069 0.59121696 0.55410454 0.51172797 0.46512715 0.46512715 0.36572557 0.36572557 0.36572557 0.16728193 0.22186425 0.17986651 0.14190958 0.10931895 0.08119418 0.05654288 | 1.041.7076 0.65968252 0.65529202 0.64170331 0.61928343 0.58935165 0.55259608 0.51026430 0.46410765 0.41517986 0.36511390 0.31558358 0.22187672 0.18026542 0.14235072 0.10953987 0.08186430 0.05706206 | 1.03926584
0.65970542
0.65327495
0.63688678
0.61798362
0.58737472
0.55081601
0.50947854
0.46276625
0.41446634
0.36495450
0.31498194
0.26751142
0.22212122
0.18022670
0.14303889
0.10979758
0.06216327
0.05791286 | 1.03749459
0.65994792
0.65141679
0.65141679
0.63617878
0.61693311
0.58551697
0.54910978
0.50880001
0.46147889
0.41377912
0.36485299
0.31436657
0.26748596
0.22237976
0.18012981
0.14372316
0.11003916
0.08238865
0.05878317 | | NBA | R= | 17 | 18 | 19 | 20 | |-----|-----|---------|------------|--------------|------------| | ŠIG | MA= | | | _ | | | | 1.0 | 3585111 | 1,03432791 | 1.03291526 | 1.03160428 | | 0 | | 6037215 | 0.66090771 | 0 • 66150435 | 0.66212644 | | 1 | 0.6 | 4970394 | 0.64812374 | 0.64666287 | 0.64530977 | | 2 | 0.6 | 3359226 | 0.63114161 | 0.62883111 | 0.62665789 | | 3 | 0.6 | 1581902 | 0.61491683 | 0.61410617 | 0.61337122 | | 4 | 0.5 | 8376866 | 0.58212972 | 0.58059601 | 0.57916266 | | 5 | 0.5 | 4749272 | 0.54596962 | 0.54453920 | 0.54319878 | | 6 | 0.5 | 0821093 | 0.50769286 | 0.50723140 | 0.50681569 | | 7 | 0.4 | 6024604 | 0.45907536 | 0.45796918 | 0.45692788 | | 8 | 0.4 | 1313273 | 0.41252707 | 0.41196002 | 0.41142946 | | 9 | | 6478686 | 0.36474445 | 0.36471789 | 0.36470157 | | 10 | 0.3 | 1375269 | 0.31315288 | 0.31257424 | 0.31202123 | | 11 | | 6786152 | 0.26803328 | 0.26819848 | 0.26835538 | | 12 | 0.2 | 2263243 | 0.22287520 | 0.22310617 | 0.22332434 | | 13 | 0.1 | 8000136 | 0.17985472 | 0.17969881 | 0.17953993 | | 14 | 0.1 | 4439092 | 0.14503282 | 0.14564429 | 0.14622282 | | 15 | 0.1 | 1025766 | 0.11045649 | 0.11063853 | 0.11080610 | | 16 | 0.0 | 8256858 | 0.08271396 | 0.08283314 | 0.08293238 | | 17 | | 5964210 | 0.06047507 | 0.06127389 | 0.06203360 | | 18 | 0.0 | 3771719 | 0.03740327 | 0.03710810 | 0.03683354 | | 19 | | 3276150 | 0.03295338 | 0.03313398 | 0.03330254 | | 20 | | 3702616 | 0.03892582 | 0.04088890 | 0.04291062 | ### DR=60 | NBA | R= 8 | 9 | 10 | 11 | 12 | |---|--|--|--|---|--| | SIG | MA= | | | | | | | 1.04629153 | 1.04619595 | 1.04519355 | 1.04375638 | 1.04213387 | | 0 | 0.72897438 | 0.72884895 | 0.72755777 | 0.72595548 | 0.72373902 | | 1 | 0.72326519 | 0.72315815 | 0.72191572 | 0.72024598 | 0.71820199 | | 2 | 0.70638349 | 0.70627565 | 0.70516643 | 0.70345500 | 0.70165121 | | 3 | 0.67903708 | 0.67893577 | 0.67791931 | 0.67637160 | 0.67463208 | | 4 | 0.64232808 | 0.64224112 | 0.64129422 | 0.63999306 | 0.63839004 | | 5 | 0.59768567 | 0.59761459 | 0.59680047 | 0.59566286 | 0.59438305 | | 6 | 0.54680648 | 0.54674819 | 0.54612767 | .0.54515662 | 0.54413289 | | 7 | 0.49157545 | 0.49152887 | 0.49107624 | 0.49038018 | 0.48953148 | | 8
9 | 0.43394708 | 0.43391512 | 0.43357924 | 0.43314819 | 0.43259479 | | 10 | 0.37581305 | 0.37579755 | 0.37559057 | 0.37531217 | 0.37505665 | | 11 | 0.31890736
0.26476360 | 0.31890475 | 0.31885942 | 0.31873339 | 0.31861144 | | 12 | 0.21468028 | 0.26476795
0.21468960 | 0.26484488 | 0.26493447 | 0.26496217 | | 13 | 0.16964537 | 0.16966168 | 0.21480874
0.16980978 | 0.21503293 | 0.21528912 | | 14 | 0.13024501 | 0.13026807 | 0.13048806 | 0.17003633
0.13075528 | 0.17035736
0.13103020 | | 15 | 0.09665878 | 0.09668244 | 0.13075508 | 0.09733510 | 0.13103020 | | 16 | 0.06882099 | 0.06883853 | 0.04895177 | 0.06941631 | 0.04772142 | | 17 | 0.04669449 | 0.04670645 | 0.04682527 | 0.04700383 | 0.04724073 | | 18 | 0.03047352 | 0.03048740 | 0.03060940 | 0.03074164 | 0.03083726 | | 19 | 0.02054680 | 0.02056800 | 0.02080036 | 0.02114198 | 0.02152767 | | 20 | 0.01722590 | 0.01725110 | 0.01735134 | 0.01804105 | 0.01866920 | | | | | | | | | | | | | | | | NBA | R= 13 | 14 | 15 | 16 | 17 | | NBA
Sig | MA= | | | | 17 | | | | 14 | 15
1.03721257 | 16
1.03569438 | 17
1.03426117 | | | MA= | | 1.03721257 | | | | SIG | MA=
1.04045995 | 1.03880717 | | 1.03569428 | 1.03426117 | | 0
1
2 | MA=
1.04045995
0.72188493 | 1.03880717 | 1.03721257 | 1.03569428 | 1.03426117 | | 0
1
2
3 | MA=
1.04045995
0.72188493
0.71619468
0.69959140
0.67286058 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958 | 1.03569438
0.71787617
0.71040745 | 1.03426117
0.71722760
0.70870133 | | 0
1
2
3
4 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643 | | 0
1
2
3
4
5 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882 | | 51G
0
1
2
3
4
5
6 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408 | | SIG
0
1
2
3
4
5
6
7 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.663556339
0.59018950
0.54104280
0.48693355 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.48504616 | | SIG
0
1
2
3
4
5
6
7
8 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.66956958
0.63356339
0.59018950
0.54104280
0.48693355
0.43088097 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.66823258
0.58877975
0.54026462
0.48597344
0.43033636 |
1.03426117
0.71722760
0.70870133
0.69119096
0.66598904
0.63044643
0.58742882
0.53954408
0.48504616
0.42981530 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.04043995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.37472941 | 1.03880717
0.71955400
0.71411383
0.69772799
0.637099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
9.37433947 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63936339
0.59018950
0.54104280
0.48693355
0.43088097
0.37416708 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.638877975
0.54026462
0.48597344
0.43033636
0.37402118 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.48504616
0.42981530
0.37389386 | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.04043995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48674224 0.43196947 0.37472941 0.31855913 | 1.03880717
0.71955400
0.71411383
0.69772799
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37433947
0.31847483 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.538742882
0.53954408
0.48504616
0.42981530
0.37389386
0.31754756 | | SIG
0
1
2
3
4
5
6
7
8
9
10 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.37472941 0.31855913 0.2649855 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59184217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356950
0.59018950
0.54104280
0.48693355
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747 | 1.03569428
0.71787617
0.71040745
0.69329240
0.66823258
0.63197975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53754408
0.48504616
0.42981530
0.37389386
0.31754756
0.26555307 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.31855913 0.26498555 0.21548066 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710
0.21561540 | 1.03721257
0.71845205
0.71221379
0.69547712
0.66956958
0.633559
0.59018950
0.54104280
0.48693355
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273 | 1.03569428
0.71787617
0.71040745
0.69329240
0.66823258
0.631978975
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53754408
0.48504616
0.42981530
0.37389386
0.31754756
0.26555307
0.21635357 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.31855913 0.26498555 0.21548066 0.17074022 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59184217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710
0.21561540
0.17109292 | 1.03721257
0.71845205
0.71221379
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931 | 1.03569428
0.71787617
0.71040745
0.69329240
0.66823258
0.63197975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.44504616
0.42981530
0.37389386
0.31754756
0.26555307
0.21635357
0.17141329 | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.31855913 0.26498555 0.21548066 0.17074022 0.13134775 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37433947
0.31847483
0.26508710
0.21561540
0.17109292
0.13173772 | 1.03721257
0.71845205
0.71221379
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931
0.13225013 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267
0.13275752 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.44504616
0.42981530
0.37389386
0.37389386
0.31754756
0.26555307
0.21635357
0.17141329
0.13325217 | | SIG
012345678910112131415 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.31855913 0.26498555 0.21548066 0.17074022 0.13134775 0.09805098 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710
0.21561540
0.17109292
0.13173772
0.09832878 | 1.03721257
0.71845205
0.71221379
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.4869355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931
0.13225013
0.09862627 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267
0.13275752
0.09891241 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.42981530
0.42981530
0.37389386
0.37389386
0.31754756
0.26555307
0.21635357
0.17141329
0.13325217
0.09918118 | | SIG
0123456789011213141516 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43194947 0.37472941 0.31855913 0.26498555 0.21548066 0.17074022 0.13134775 0.09805098 0.07037903 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710
0.21561540
0.17109292
0.13173772
0.09832878
0.07085181 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931
0.13225013
0.09862627
0.07114688 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267
0.13275752
0.09891241
0.07140581 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.48504616
0.42981530
0.37389386
0.37389386
0.37389386
0.26555307
0.21635357
0.17141329
0.13325217
0.09918118
0.07163892 | | SIG
0123456789011213145167 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43196947 0.37472941 0.31855913 0.26498555 0.21548066 0.17074022 0.13134775 0.09805098 0.07037903 0.04754861 | 1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37433947
0.31847483
0.26508710
0.21561540
0.17109292
0.13173772
0.09832878
0.07085181
0.04793274 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931
0.13225013
0.09862627
0.07114688
0.04848272 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.448597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267
0.13275752
0.09891241
0.07140581
0.04904206 | 1.03426117
0.71722760
0.70870133
0.69119076
0.66698904
0.63044643
0.58742882
0.53954408
0.48504616
0.42981530
0.37389386
0.31754756
0.26555307
0.21635357
0.17141329
0.13325217
0.09918118
0.07163892
0.04959449 | | SIG
0123456789011213141516 | MA= 1.04045995 0.72188493 0.71619468 0.69959140 0.67286058 0.63682497 0.59295084 0.54304140 0.48874224 0.43194947 0.37472941 0.31855913 0.26498555 0.21548066 0.17074022 0.13134775 0.09805098 0.07037903 |
1.03880717
0.71955400
0.71411383
0.69772799
0.67099269
0.63522651
0.59164217
0.54187871
0.48792160
0.43143786
0.37432947
0.31847483
0.26508710
0.21561540
0.17109292
0.13173772
0.09832878
0.07085181 | 1.03721257
0.71865205
0.71221399
0.69547712
0.66956958
0.63356339
0.59018950
0.54104280
0.48693355
0.43088097
0.37416708
0.31817417
0.26524747
0.21586273
0.17122931
0.13225013
0.09862627
0.07114688 | 1.03569438
0.71787617
0.71040745
0.69329240
0.66823258
0.63196836
0.58877975
0.54026462
0.48597344
0.43033636
0.37402118
0.31786261
0.26540194
0.21611237
0.17133267
0.13275752
0.09891241
0.07140581 | 1.03426117
0.71722760
0.70870133
0.69119096
0.66698904
0.63044643
0.58742882
0.53954408
0.48504616
0.42981530
0.37389386
0.37389386
0.37389386
0.26555307
0.21635357
0.17141329
0.13325217
0.09918118
0.07163892 | | NBAR= | | 18 | 19 | 20 | | | | |--------|-----|---------|------------|------------|--|--|--| | SIGHA= | | | | | | | | | | 1.0 | 3291339 | 1.03164884 | 1.03046401 | | | | | 0 | | 1668040 | 0.71621236 | 0.71580599 | | | | | 1 | 0.7 | 0709712 | 0.70559125 | 0.70417923 | | | | | 2 | 0+6 | 8918703 | 0.68728554 | 0.68548799 | | | | | 3 | 0.6 | 6563402 | 0.66476005 | 0.66376024 | | | | | 4 | 0.6 | 2900366 | 0.62764060 | 0.62635614 | | | | | 5 | 0.5 | 8614433 | 0.58492794 | 0.58377958 | | | | | 6 | 0.5 | 3887474 | 0.53825740 | 0.53768141 | | | | | 7 | 0.4 | 8415079 | 0.48331420 | 0.48251361 | | | | | 8 | 0.4 | 2932021 | 0.42885130 | 0.42840823 | | | | | 9 | 0.3 | 7378115 | 0.37368005 | 0.37358623 | | | | | 10 | 0.3 | 1723577 | 0.31693137 | 0.31663719 | | | | | 11 | 0.2 | 6569354 | 0.26583719 | 0.26596833 | | | | | 12 | 0.2 | 1658395 | 0.21680256 | 0.21700899 | | | | | 13 | 0.1 | 7147649 | 0.17152633 | 0.17156603 | | | | | 14 | 0.1 | 3372833 | 0.13418325 | 0.13461538 | | | | | 15 | 0.0 | 9943290 | 0.09966852 | 0.09988904 | | | | | 16 | 0.0 | 7184950 | 0.07204071 | 0.07221522 | | | | | 17 | 0.0 | 5013183 | 0.05064941 | 0.05114427 | | | | | 18 | 0.0 | 3064950 | 0.03058962 | 0.03053310 | | | | | 19 | 0.0 | 2307172 | 0.02324628 | 0.02341191 | | | | | 20 | 0.0 | 2410447 | 0.02519126 | 0.02631567 | | | | POR THE PROPERTY OF PROPER A= 2.60267633 | NBA | R= 10 | 11 | 12 | 13 | 14 | | | |---|--|--|--|--|---|--|--| | SIGMA= | | | | | | | | | | 1.04022518 | 1.03964447 | 1.03867911 | 1.03751925 | 1.03627546 | | | | 0 | 0.78393278 | 0.78321089 | 0.78185364 | 0.78039825 | 0.77860188 | | | | 1 | 0.77728462 | 0.77655205 | 0.77526812 | 0.77376097 | 0.77209236 | | | | 2 | 0.75763192 | 0.75690688 | 0.75574130 | 0.75424924 | 0.75272052 | | | | 3 | 0.72584049 | 0.72518477 | 0.72409123 | 0.72277994 | 0.72131359 | | | | 4 | 0.68330766 | 0.68275052 | 0.68176935 | 0.68062225 | 0.67936181 | | | | 5 | 0.63186810 | 0.63139471 | 0.63060399 | 0.62960173 | 0.62857038 | | | | 6
7 | 0.57366006 | 0.57327372 | 0.57265434 | 0.57189041 | 0.57102887 | | | | 8 | 0.51098805
0.44620124 | 0.51071565 | 0.51023749 | 0.50969633 | 0.50909343 | | | | 9 | 0.38156949 | 0.44603783
0.38148191 | 0.44573951
0.38135647 | 0.44535660 | 0.38095367 | | | | 10 | 0.31914545 | 0.31912628 | 0.31910242 | 0.38117713
0.31910401 | 0.31908953 | | | | 11 | 0.26064873 | 0.26070599 | 0.26077526 | 0.26085759 | 0.26098176 | | | | 12 | 0.20741871 | 0.20752494 | 0.20770263 | 0.20788472 | 0.20806082 | | | | 13 | 0.16041350 | 0.16052808 | 0.16074364 | 0.16102466 | 0.16131472 | | | | 14 | 0.12018131 | 0.12030610 | 0.12050648 | 0.12076390 | 0.12107582 | | | | 15 | 0.08680453 | 0.08695322 | 0.08718498 | 0.08743692 | 0.08768850 | | | | 16 | 0.05995033 | 0.06008732 | 0.06033421 | 0.06064065 | 0.06096016 | | | | 17 | 0.03913874 | 0.03922180 | 0.03937407 | 0.03958444 | 0.03984629 | | | | 18 | 0.02410492 | 0.02416552 | 0.02424935 | 0.02433028 | 0.02440020 | | | | 19 | 0.01494535 | 0.01504654 | 0.01521318 | 0.01541565 | 0.01561956 | | | | 20 | 0.01188016 | 0.01201359 | 0.01226164 | 0.01259488 | 0.01299387 | NBA | R= 15 | 16 | 17 | 18 | 19 | | | | NBA
Sig | | 16 | 17 | 18 | 19 | | | | | | 16 | 17
1.03255427 | 18
1.03139401 | 19
1.03028795 | | | | | MA= | • | | | | | | | SIG | MA=
1.03501123 | 1.03376398 | 1.03255427 | 1.03139401 | 1.03028795 | | | | SIG
0 | MA=
1.03501123
0.77740823 | 1.03376398 | 1.03255427 | 1.03139401 | 1.03028795 | | | | SIG | MA=
1.03501123
0.77740823
0.77044152 | 1.03376398
0.77625282
0.76880752 | 1.03255427
0.77516254
0.76721798 | 1.03139401
0.77414032
0.76568926 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594 | | | | 0
1
2 | MA=
1.03501123
0.77740823
0.77044152
0.75094595 | 1.03376398
0.77625282
0.76880752
0.74917367 | 1.03255427
0.77516254
0.76721798
0.74743420 | 1.03139401
0.77414032
0.76568926
0.74574938 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237 | | | | 0
1
2
3 | MA=
1.03501123
0.77740823
0.77044152
0.75094595
0.71999719 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407964 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694 | | | | SIG
0
1
2
3
4
5
6 | MA= 1.03501123 0.77740823 0.77044152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706 | | | | SIG
0
1
2
3
4
5
6
7 | MA= 1.03501123 0.77740823 0.77044152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50629740 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188 | | | | SIG
0
1
2
3
4
5
6
7
8 | MA= 1.03501123 0.77740823 0.77044152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.62628396
0.56955358
0.50767608
0.44417266 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.672516318
0.662516318
0.56884694
0.50697709
0.44377293 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67407364
0.56817082
0.50629740
0.44338534 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.62303694
0.56252706
0.50564188
0.44301221 | | | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.03501123 0.77740823 0.77044152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608
0.44417266
0.38069780 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.38058015 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407964
0.56817082
0.50629740
0.44338534
0.38046899 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67303694
0.56752706
0.50564188
0.44301221
0.38036396 | | | | SIG
0
1
2
3
4
5
6
7
8
9 | MA= 1.03501123 0.77740823 0.777044152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 0.31897062 |
1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608
0.44417266
0.38069780
0.31884247 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.50684694
0.50697709
0.44377293
0.38058015
0.31870848 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.62407964
0.56817082
0.50629740
0.44338534
0.38046899
0.31857222 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.31843606 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.57028500 0.50838512 0.44457964 0.38082201 0.31897062 0.26113666 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.56955358
0.44417266
0.38069780
0.31884247
0.26128917 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.56884694
0.50697709
0.44377293
0.38058015
0.31870848
0.26143887 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407964
0.50629740
0.44338534
0.38046899
0.31857222
0.26158356 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.31843606
0.26172212 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.5088512 0.44457964 0.38082201 0.31897062 0.26113666 0.20829454 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.5075608
0.44417266
0.38069780
0.31884247
0.26128917
0.20853162 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884694
0.56884693 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.56817082
0.56817082
0.38046899
0.31857222
0.26158356
0.20898838 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.56752706
0.56752706
0.538036396
0.31843606
0.26172212
0.20920347 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.5088512 0.44457964 0.38082201 0.31897062 0.26113666 0.20829454 0.16151411 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.56955358
0.56955358
0.38069780
0.31884247
0.26128917
0.20853162
0.16170076 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.56884694
0.5058815
0.38058015
0.31870848
0.26143887
0.20876393
0.16187524 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.56817082
0.36846899
0.31857222
0.26158356
0.20898838
0.16203751 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.556756188
0.44301221
0.38036396
0.31843606
0.26172212
0.20920347
0.16218820 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.31897062 0.31897062 0.26113666 0.20829454 0.16151411 0.12145743 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.56955358
0.5044417266
0.38069780
0.31884247
0.26128917
0.20853162
0.16170076
0.12184262 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.56884694
0.5058815
0.38058015
0.31870848
0.26143887
0.20876393
0.16187524
0.12222352 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.56817082
0.56817082
0.38046899
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.56752706
0.128036396
0.26172212
0.20920347
0.16218820
0.12295246 | | | | SIG
0 12345678910112131415 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.31897062 0.26113666 0.20829454 0.16151411 0.12145743 0.08796076 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.5076608
0.44417266
0.38069780
0.31884247
0.26128917
0.26128917
0.20853162
0.16170076
0.12184262
0.08823242 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.31870848
0.26143887
0.20876393
0.16187524
0.12222352
0.08849634 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50629740
0.44338534
0.38046899
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447
0.08874998 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.31843606
0.26172212
0.20920347
0.16218820
0.12295246
0.08899225 | | | | SIG
0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 0.38082201 0.381897062 0.26113666 0.20829454 0.16151411 0.12145743 0.08796076 0.06121017 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.5075608
0.44417266
0.38069780
0.31884247
0.26128917
0.20853162
0.16170076
0.12184262
0.08823242
0.06144910 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.38058015
0.31870848
0.26143887
0.20876393
0.16187524
0.12222352
0.08849634
0.06167739 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50629740
0.44338534
0.35046899
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447
0.08874998
0.06189376 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.31843606
0.26172212
0.20920347
0.16218820
0.12295246
0.088999225
0.06209812 | | | | SIG
0 1 2 3 4 5 6 7 8 9 10 1 1 2 1 3 1 4 1 5 1 6 1 7 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 0.38082201 0.26113666 0.20829454 0.16151411 0.12145743 0.08796076 0.06121017 0.04019663 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608
0.44417266
0.38069780
0.31884247
0.26128917
0.20853162
0.16170076
0.12184262
0.08823242
0.06144910
0.04055803 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.38058015
0.31870848
0.26143887
0.20876393
0.16187524
0.12222352
0.08849634
0.06167739
0.04091970 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50627740
0.44338534
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447
0.08874998
0.06189376
0.04127544 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.38036396
0.26172212
0.20920347
0.16218820
0.12295246
0.088999225
0.06209812
0.04142157 | | | | SIG
012345678901121314516718 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 0.38082201 0.38082201 0.26113666 0.20829454 0.16151411 0.12145743 0.08796076 0.06121017 0.04019663 0.02445011 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608
0.44417266
0.380697580
0.44417266
0.38069780
0.16170076
0.12184262
0.06144910
0.04055803
0.02447652 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.38058015
0.31875293
0.20876393
0.16187524
0.12222352
0.08849634
0.06167739
0.04091970
0.02453950 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50629740
0.44338534
0.31845899
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447
0.08874998
0.06189376
0.04127544
0.02457963 |
1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.38036396
0.26172212
0.20920347
0.16218820
0.12295246
0.088999225
0.06209812
0.04162157
0.02461753 | | | | SIG
0 1 2 3 4 5 6 7 8 9 10 1 1 2 1 3 1 4 1 5 1 6 1 7 | MA= 1.03501123 0.77740823 0.77744152 0.75094595 0.71999719 0.67801877 0.62742726 0.57028500 0.50838512 0.44457964 0.38082201 0.38082201 0.26113666 0.20829454 0.16151411 0.12145743 0.08796076 0.06121017 0.04019663 | 1.03376398
0.77625282
0.76880752
0.74917367
0.71869858
0.67668481
0.62628396
0.56955358
0.50767608
0.44417266
0.38069780
0.31884247
0.26128917
0.20853162
0.16170076
0.12184262
0.08823242
0.06144910
0.04055803 | 1.03255427
0.77516254
0.76721798
0.74743420
0.71744264
0.67538046
0.62516318
0.56884694
0.50697709
0.44377293
0.38058015
0.31870848
0.26143887
0.20876393
0.16187524
0.12222352
0.08849634
0.06167739
0.04091970 | 1.03139401
0.77414032
0.76568926
0.74574938
0.71624049
0.67412061
0.62407364
0.56817082
0.50627740
0.44338534
0.31857222
0.26158356
0.20898838
0.16203751
0.12259447
0.08874998
0.06189376
0.04127544 | 1.03028795
0.77318360
0.76422837
0.74413020
0.71509594
0.67291237
0.62303694
0.56752706
0.50564188
0.44301221
0.38036396
0.38036396
0.26172212
0.20920347
0.16218820
0.12295246
0.088999225
0.06209812
0.04142157 | | | #### NBAR= 20 #### SIGMA= - 1.02923822 - 0.77228857 - 0.76283866 0.74258312 - 0.71401032 - 0.67175977 0.62204191 - 0.56691615 - 0.50501360 - 8 0.44265495 0.38026465 - 0.31830181 - 0.26185390 0.20940834 0.16232814 11 12 - 13 - 0.12329555 14 - 0.08922266 0.06229071 15 - 16 - 0.0419555 17 - 0.02465362 0.01649133 18 - 19 #### DR=70 | NDA | IR= 11 | 12 | 13 | 14 | 15 | | | |---|--|---|---|---|---|--|--| | SIGMA= | | | | | | | | | | 1.03528610 | 1.03501020 | 1.03439152 | 1.03357951 | 1.03266479 | | | | 0 | 0.83929290 | 0.83888947 | 0.83903749 | 0.83691989 | 0.93571767 | | | | 1 | 0.83160512 | 0.83121797 | 0.83035678 | 0.82920019 | 0.82791183 | | | | 2 | 0.80891696 | 0.80856053 | 0.80772669 | 0.00462248 | 0.80534832 | | | | 3 | 0.77232780
0.72358044 | 0.77199955
0.72329188 | 0.77126015
0.72265180 | 0.77026119
0.72179538 | 0.76920688 | | | | 5 | 0.66493431 | 0.66470214 | 0.66416165 | 0.66346620 | 0.65263799 | | | | 6 | 0.59901169 | 0.57883388 | 0.59842625 | 0.59787195 | 0.59730206 | | | | 7 | 0.52862390 | 0.52849463 | 0.52821416 | 0.52783488 | 0.52736433 | | | | 8 | 0.45658216 | 0.45650626 | 0.45632739 | 0.45610618 | 0.45584511 | | | | 9 | 0.38552316 | 0.38549643 | 0.38542664 | 0.38532240 | 0.38524567 | | | | 10 | 0.31777452 | 0.31778052 | 0.31780389 | 0131782784 | 0.31780963 | | | | 11 | 0.25524316 | 0.25527592 | 0.25534993 | 0.25546176 | 0.25560015 | | | | 12 | 0.19932353 | 0.19938158 | 0.19950275 | 0.19965378 | 0.19984956 | | | | 13
14 | 0.15087533
0.11027430 | 0.15094260 | 0.15110118 | 0.15130542 | 0.15149511 | | | | 15 | 0.11027430 | 0.11033810
0.07750586 | 0.11048761 | 0.11069944
0.07782431 | 0.07803391 | | | | 16 | 0.05183161 | 0.05189570 | 0.05204286 | 0.05223293 | 0.05241563 | | | | 17 | 0.03260505 | 0.03264808 | 0.03275369 | 0.03290732 | 0.03311663 | | | | 18 | 0.01902743 | 0.01905341 | 0.01910633 | 0.01917050 | 0.01923495 | | | | 19 | 0.01083109 | 0.01086709 | 0.01094681 | 0.01104818 | 0.01114040 | | | | 20 | 0.00809126 | 0.00813885 | 0.00825648 | 0.00842680 | 0.00863832 | NBA | R= 16 | 17 | 18 | 19 | 20 | | | | | R= 16
BMA= | 17 | 18 | 19 | 20 | | | | | ··· | 17
1.03073217 | 18
1.02977116 | 19
1.02883372 | 20
1.02792785 | | | | | iMA= | | | | | | | | SIG
0
1 | MA=
1.03170413 | 1.03073217
0.83339351
0.82516771 | 1.02977116 | 1.02883372
0.83113186
0.82244919 | 1.02792785
0.83005797
0.82114528 | | | | 0
1
2 | MA=
1.03170413
0.83455919
0.82655112
0.80396298 | 1.03073217
0.83339351
0.82516771
0.80254880 | 1.02977116
0.83224650
0.82379412
0.80113991 | 1.02883372
0.83113186
0.82244919
0.79975653 | 1.02792785
0.83005797
0.82114528
0.79841225 | | | | 0
1
2
3 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075 | | | | 0
1
2
3
4 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655639 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078 | | | | 0
1
2
3
4
5 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655639
0.65908791 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388 | | | | SIG
0
1
2
3
4
5
6 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655639
0.65908791
0.59489281 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873 | | | | SIG
0
1
2
3
4
5
6
7 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073
0.52686450 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.52635213 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512
0.52583973 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.52533481 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.52484257 | | | | SIG
0
1
2
3
4
5
6 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655639
0.65908791
0.59489281 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873 | | | | 0
1
2
3
4
5
6
7
8 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073
0.52686450
0.45556546
0.38516643
0.31778642 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.776696435
0.66086095
0.59609042
0.52635213
0.45527889 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.77586645
0.59548512
0.52583973
0.45499234 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.52533481
0.45470988 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.52484257
0.45443436 | | | | SIG
0
1
2
3
4
5
6
7
8
9 |
1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073
0.596450
0.45556546
0.38516643
0.31778642
0.25574504 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.52635213
0.45527889
0.38508605
0.31775873
0.25589231 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71766645
0.595848512
0.595848512
0.59583973
0.45499234
0.38500625
0.31772769
0.25603831 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.52533481
0.45470988
0.38492792
0.31769422
0.25615094 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.715823388
0.59431873
0.52484257
0.45443436
0.38485162
0.31765914
0.25631880 | | | | 0
1
2
3
4
5
6
7
8
9
10
11 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59680450
0.45556546
0.38516643
0.31778642
0.25574504
0.20005833 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.596635213
0.45527889
0.38508605
0.31775873
0.25589231
0.20027087 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71766645
0.575848512
0.52583973
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.52533481
0.45470988
0.38492792
0.31769422
0.25615094
0.20069866 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59431873
0.59431873
0.38485162
0.31765914
0.25631880
0.20068889 | | | | 0
1
2
3
4
5
6
7
8
9
10
11
12
13 | 1.03170413 0.83455919 0.82655112 0.80396298 0.76809369 0.71974723 0.66175866 0.59670073 0.59670073 0.5965460 0.45556546 0.38516643 0.31778642 0.25574504 0.20005833 0.15169155 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59663213
0.45527889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71766645
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.5758512
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199
0.15208189 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.59489281
0.45470988
0.38492792
0.31769422
0.25615094
0.20068866
0.15226928 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59484257
0.45443436
0.38485162
0.31765914
0.25631880
0.20068889
0.15244937 | | | | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1.03170413 0.83455919 0.82655112 0.80396298 0.76809369 0.71974723 0.66175866 0.59670073 0.59670073 0.5965460 0.45556546 0.38516643 0.31778642 0.25574504 0.20005833 0.15169155 0.11125071 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.52609042
0.526327889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855
0.11154213 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512
0.59548512
0.59548512
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199
0.15208189
0.11183335 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.59489281
0.45470988
0.38492792
0.31769422
0.25615094
0.20068866
0.15226928
0.11212002 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59484257
0.45443436
0.38485162
0.31765914
0.25631880
0.20068889
0.15244937
0.11239914 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073
0.52686450
0.45556546
0.38516643
0.31778642
0.25574504
0.20005833
0.15169155
0.11125071
0.07825660 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.59609042
0.596527889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855
0.11154213
0.07848313 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512
0.52587373
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199
0.11183335
0.07870821 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.59489281
0.45470988
0.38492792
0.31769422
0.25618094
0.20068866
0.15226928
0.11212002
0.07892876 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59431873
0.59431873
0.38485162
0.31765914
0.2068889
0.15244937
0.11239914
0.07914274 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1.03170413 0.83455919 0.82655112 0.80396298 0.76809369 0.71974723 0.66175866 0.59670073 0.52686450 0.455566450 0.455566460 0.38516643 0.31778642 0.25574504 0.20005833 0.15169155 0.11125071 0.07825660 0.05260573 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.5263213
0.45527889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855
0.11154213
0.07848313
0.05279790 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512
0.525899234
0.31772769
0.25603831
0.20048199
0.11183335
0.07870821
0.05298783 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.59489281
0.45470988
0.38492792
0.31769422
0.25618094
0.2068866
0.15226928
0.11212002
0.07892876
0.05317314 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59431873
0.524433436
0.31755914
0.2068889
0.15244937
0.11239914
0.07914274
0.05335235 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.03170413
0.83455919
0.82655112
0.80396298
0.76809369
0.71974723
0.66175866
0.59670073
0.52686450
0.45556546
0.38516643
0.31778642
0.25574504
0.20005833
0.15169155
0.11125071
0.07825660 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.59609042
0.596527889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855
0.11154213
0.07848313 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.59548512
0.52587373
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199
0.11183335
0.07870821 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.59489281
0.59489281
0.45470988
0.38492792
0.31769422
0.25618094
0.20068866
0.15226928
0.11212002
0.07892876 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.59431873
0.59431873
0.38485162
0.31765914
0.2068889
0.15244937
0.11239914
0.07914274 | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | 1.03170413 0.83455919 0.82655112 0.80396298 0.76809369 0.71974723 0.66175866 0.59670073 0.52686450 0.4555664643 0.38516643 0.38516643 0.38516643 0.15169155 0.11125071 0.07825660 0.05260573 0.03334311 | 1.03073217
0.83339351
0.82516771
0.80254880
0.76696432
0.71867415
0.66086095
0.59609042
0.5263213
0.45527889
0.38508605
0.31775873
0.25589231
0.20027087
0.15188855
0.11154213
0.07848313
0.05279790
0.05357742 | 1.02977116
0.83224650
0.82379412
0.80113991
0.76584496
0.71760620
0.65996645
0.52583973
0.45499234
0.38500625
0.31772769
0.25603831
0.20048199
0.11183335
0.07870821
0.05298783
0.03381351 | 1.02883372
0.83113186
0.82244919
0.79975653
0.76475058
0.71655839
0.65908791
0.52533481
0.52533481
0.45470988
0.38492792
0.31769422
0.25618094
0.2068866
0.15226928
0.11212002
0.07892876
0.05317314
0.03404758 | 1.02792785
0.83005797
0.82114528
0.79841225
0.76369075
0.71554078
0.65823388
0.59431873
0.52484257
0.4544336
0.38485162
0.31765914
0.25631880
0.20068889
0.15244937
0.11239914
0.07914274
0.05335235
0.03427692 | | | ### DB=75 | NBA | R= 12 | 13 | 14 | 15 | 16 | | | |---|---
--|--|--|--------------------------|--|--| | SIGMA= | | | | | | | | | | 1.03113440 | 1.03108212 | 1.03072333 | 1.03017631 | 1.02951776 | | | | 0 | 0.89483211 | 0.89475453 | 0.89419253 | 0.89342918 | 0.89250316 | | | | i | 0.88602992 | 0.88595261 | 0.88541217 | 0.88458987 | 0.88359279 | | | | 2 | 0.86009163 | 0.86001785 | 0.85951537 | 0.85870941 | 0.85773141 | | | | 3 | 0.81837506 | 0.81830949 | 0.81784970 | 0.81717116 | 0.81634779 | | | | 4 | 0.76301640 | 0.76296026 | 0.76256865 | 0.76195788 | 0.76121710 | | | | 5 | 0.69677667 | 0.69673053 | 0.69641621 | 0.69591860 | 0.69531362 | | | | 6 | 0.62283128 | 0.62279709 | 0.62255609 | 0.62220668 | 0.62178246 | | | | 7 | 0.54452970 | 0.54450700 | 0.54434732 | 0.54406720 | 0.54377089 | | | | 8 | 0.46517235 | 0.46515931 | 0.46507313 | 0.46493671 | 0.46476948 | | | | 9 | 0.38780045 | 0.38779673 | 0.38776783 | 0.38773837 | 0.38770257 | | | | 10 | 0.31500728 | 0.31501121 | 0.31503647 | 0.31505891 | 0.31506481 | | | | 11 | 0.24882064 | 0.24882908 | 0.24889134 | 0.24899099 | 0.24911093 | | | | 12 | 0.19064519 | 0.19065706 | 0.19073687 | 0.19086850 | 0.19102866 | | | | 13
14 | 0.14122912
0.10070976 | 0.14124316 | 0.14133884 | 0.14147087
0.10097445 | 0.14162982
0.10116435 | | | | 15 | 0.06873750 | 0.10072300 | 0.10081834
0.06883035 | 0.10097443 | 0.06911284 | | | | 16 | 0.04454247 | 0.04455376 | 0.04463061 | 0.04473702 | 0.04486535 | | | | 17 | 0.02700142 | 0.02700961 | 0.02706990 | 0.02717505 | 0.02730427 | | | | 18 | 0.01498177 | 0.01498631 | 0.01501647 | 0.01506019 | 0.01511344 | | | | 19 | 0.00783812 | 0.00784320 | 0.00787724 | 0.00792158 | 0.00797586 | | | | 20 | 0.00545689 | 0.00546554 | 0.00551522 | 0.00559780 | 0.00570623 | NBA | R= 17 | 18 | 19 | 20 | | | | | | | 18 | 19 | 20 | | | | | | MA= | | - | | | | | | | | 18 | 19
1.02728736 | 20 | | | | | SIG | MA=
1.02879676
0.89148679 | 1.02804640 | 1.02728736 | 1.02653386 | | | | | SIG
0
1 | MA=
1.02879676
0.89148679
0.88249452 | 1.02804640
0.89042704
0.88134547 | 1.02728736
0.88935333
0.88017776 | 1.02653386
0.88828596
0.87901391 | | | | | \$1G
0
1
2 | MA=
1.02879676
0.89148679
0.88249452
0.85665237 | 1.02804640
0.89042704
0.88134547
0.85552176 | 1.02728736
0.88935333
0.88017776
0.85437124 | 1.02653386
0.88828596
0.87901391
0.85322313 | | | | | 51G
0
1
2
3 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164 | | | | | 51G
0
1
2
3 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377 | | | | | SIG
0
1
2
3
4
5 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999
0.69464568 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323228 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022 | | | | | SIG
0
1
2
3
4
5
6 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999
0.69464568
0.62131499 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323228
0.62032801 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161 | | | | | SIG
0
1
2
3
4
5
6
7 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999
0.69464568
0.62131499
0.54342067 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323226
0.62032801
0.54267642 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003 | | | | | SIG
0
1
2
3
4
5
6 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999
0.69464568
0.62131499 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323228
0.62032801 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161 | | | | | SIG
0
1
2
3
4
5
6
7
8 | MA=
1.02879676
0.89148679
0.88249452
0.85665237
0.81544139
0.76039999
0.69464568
0.62131499
0.54342067
0.46458402 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323228
0.62032801
0.54267642
0.46418897 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342067 0.46458402 0.38766273 0.31511166 0.24924271 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.595954396
0.62082565
0.54305241
0.46438870
0.38762051 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294
0.69323226
0.62032801
0.54267642
0.46418897
0.38757703 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342067 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323226
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307
0.31518704 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342067 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323228
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61783161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161 | | | | | SIG
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342067 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 0.10137431 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553
0.10159473 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323226
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920
0.10181939 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61783161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391 | | | | | SIG
012345678910112131415 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342067 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 0.10137431 0.06928396 |
1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553
0.10159473
0.06946324 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75667294
0.69323220
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920
0.10181939
0.06964568 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61783161
0.54230003
0.46396868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391
0.06982778 | | | | | SIG
01234567891011213141516 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.5434207 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 0.10137431 0.06928396 0.04500665 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553
0.10159473
0.06946324
0.04515446 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294
0.69323220
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920
0.10181939
0.06964568
0.04530470 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391
0.06982778
0.04545453 | | | | | SIG
0123456789101121314151617 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342040 0.38766273 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 0.10137431 0.06928396 0.04500665 0.02744808 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553
0.10159473
0.06946324
0.04515446
0.02759999 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294
0.69323228
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920
0.10181939
0.06964568
0.04530470
0.02775574 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391
0.06982778
0.04545453
0.02791220 | | | | | SIG
01234567891011231415161718 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342060 0.38766273 0.3151140605 0.24924271 0.19120498 0.14180405 0.10137431 0.06928396 0.04500665 0.02744808 0.01517228 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.14198553
0.10159473
0.06946324
0.04515446
0.02759999
0.01523408 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294
0.69323226
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.21957644
0.14216920
0.10181939
0.06964568
0.04530470
0.02775574
0.01529717 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391
0.06982778
0.04545453
0.02791220
0.01536035 | | | | | SIG
0123456789101121314151617 | MA= 1.02879676 0.89148679 0.88249452 0.85665237 0.81544139 0.76039999 0.69464568 0.62131499 0.54342040 0.38766273 0.46458402 0.38766273 0.31511166 0.24924271 0.19120498 0.14180405 0.10137431 0.06928396 0.04500665 0.02744808 | 1.02804640
0.89042704
0.88134547
0.85552176
0.81449360
0.75954396
0.69394538
0.62082565
0.54305241
0.46438870
0.38762051
0.31513808
0.24938018
0.19138930
0.14198553
0.10159473
0.06946324
0.04515446
0.02759999 | 1.02728736
0.88935333
0.88017776
0.85437124
0.81353086
0.75867294
0.69323228
0.62032801
0.54267642
0.46418897
0.38757703
0.31516333
0.24951945
0.19157644
0.14216920
0.10181939
0.06964568
0.04530470
0.02775574 | 1.02653386
0.88828596
0.87901391
0.85322313
0.81257164
0.75780377
0.69252022
0.61983161
0.54230003
0.46398868
0.38753307
0.31518704
0.24965782
0.19176275
0.14235161
0.10204391
0.06982778
0.04545453
0.02791220 | | | | #### DB=80 #### A= 3.15237805 | NBA | R= | 14 | 15 | 16 | 17 | 18 | | | |-----|--------|---------|------------|------------|------------|---------------------|--|--| | SIG | SIGMA= | | | | | | | | | | 1.0 | 2771111 | 1.02754903 | 1.02720733 | 1.02675004 | 1.02622131 | | | | 0 | | 5070064 | 0.95045045 | 0.94991767 | 0.94920028 | 0.94836665 | | | | 1 | | 4070580 | 0.94044770 | 0.93989911 | 0.93915969 | 0.93829950 | | | | 2 | 0.9 | 1128666 | 0.91103915 | 0.91051311 | 0.90980376 | 0.90897800 | | | | | 0.8 | 6409397 | 0.86388117 | 0.86342837 | 0.86281808 | 0.66210813 | | | | 4 | 0.8 | 0172565 | 0.80154014 | 0.80114584 | 0.80061399 | 0.7 999947 8 | | | | 5 | 0.7 | 2750705 | 0.72735887 | 0.72704349 | 0.72661779 | 0.72612194 | | | | 6 | | 4522164 | 0.64511777 | 0.64489616 | 0.64459709 | 0.64424878 | | | | 7 | 0.5 | 5882067 | 0.55874936 | 0.55859761 | 0.55839237 | 0.55815277 | | | | 8 | 0.4 | 7212606 | 0.47209173 | 0.47201811 | 0.47191831 | 0.47180150 | | | | P | 0.3 | 9857372 | 0.38857061 | 0.38856391 | 0.38855423 | 0.38854261 | | | | 10 | 0.3 | 1101369 | 0.31102873 | 0.31106043 | 0.31110255 | 0.31115084 | | | | 11 | 0.2 | 4156788 | 0.24160232 | 0.24167515 | 0.24177306 | 0.24188667 | | | | 12 | 0.1 | 8157388 | 0.18161662 | 0.18170758 | 0.18183004 | 0.18197239 | | | | 13 | | 3160963 | 0.13165244 | 0.13174325 | 0.13186545 | 0.13200741 | | | | 14 | | 9155473 | 0.09160004 | 0.09169644 | 0.09182657 | 0.09197825 | | | | 15 | | 6072861 | 0.06076584 | 0.06084527 | 0.06095249 | 0.06107743 | | | | 16 | 0.0 | 3806912 | 0.03809907 | 0.03816266 | 0.03824852 | 0.03834858 | | | | 17 | | 2222157 | 0.02224800 | 0.02230455 | 0.02238123 | 0.02247098 | | | | 18 | | 1174958 | 0.01176228 | 0.01178947 | 0.01182634 | 0.01186947 | | | | 19 | | 0565958 | 0.00566998 | 0.00569235 | 0.00572300 | 0.00575933 | | | | 20 | 0.0 | 0364246 | 0.00365858 | 0.00369527 | 0.00374830 | 0.00381453 | | | | NBA | R= | 19 | 20 | | | | | | | | | | | | | | | | Secretaria de la companya de la composición de la companya del companya de la companya de la companya de la companya del companya de la compa Control of the second s #### SIGNA= 19 20 1.02565017 1.02505730 0.94746252 0.94652062 0.93736547 0.93639128 0.90714451 0.90808081 0.86133724 0.86053323 0.79861940 0.72501965 0.79932184 0.72558275 0.64347468 0.64387011 0.55789164 0.55761832 8 0.47167389 0.47153998 0.38852948 0.38851522 10 0.31120250 0.31125557 0.24200974 0.24213774 0.18228773 12 0.18212682 0.13232164 0.09231567 0.13216133 13 0.09214326 14 0.06121334 0.06135531 15 16 17 0.03845743 0.03857116 0.02256906 0.02267198 0.01191654 0.01196590 18 0.00389174 0.00397820 0.00594198 0.00579946 #### APPENDIX 3 #### BAYLISS WEIGHTING FUNCTION TABLES In this appendix a table is presented of the Bayliss weighting function for a circular antenna aperture. In this table the design side lobe level is shown as the parameter, DB. The parameter A is derived from DB by using the following expression: $$A = 1/\pi \cosh^{-1}[10.0^{DB/20}]$$ For each value of NBAR the beam spread factor, SIGMA, and the associated sampled weighting function are tabulated. In this table 20 samples were taken across the radius of the aperture. The number of samples is user defined and can be changed to give either finer or more coarse sampling. In preparing this table the values of N which were not allowable were omitted. The minimum allowable value of N is a function of the design side lobe level. ``` A= 0.95277244 NBAK= 3 SIGMA= 1.14746191 1.13040048 1.12663190 1.10891059 1.09540489 -0.04180987 -0.04068073 -0.03272988 -0.03823956 -0.01057190 -0.08226165 -0.07977445 -0.06575164 -0.07296831 -0.03271236 -0.12007115 -0.11581995 -0.09895842 -0.10216770 -0.06964737 -0.15409746 -0.14759379 -0.13158626 -0.12600714 -0.11384739 -0.18340354 -0.17419677 -0.16219218 -0.14636755 -0.15219288 -0.20730446 -0.19510634 -0.18888901 -0.16544187 -0.17491475 -0.22540016 -0.21019077 -0.20977508 -0.18416413 -0.18184015 -0.23759115 -0.21968614 -0.22343302 -0.20133513 -0.18151942 -0.24407592 -0.22414125 -0.22934662 -0.21397358 -0.18406263 10 -0.24533077 -0.22433949 -0.22810619 -0.21879218 -0.19313425 11 -0.24207311 -0.22120952 -0.22133417 -0.21409599 -0.20316332 12 -0.23521099 -0.21572920 -0.21134537 -0.20113525 -0.20396469 13 -0.22578186 -0.20885408 -0.20063458 -0.18416258 -0.18943805 14 -0.21488473 -0.20144291 -0.19133445 -0.16905003 -0.16384882 -0.20360998 -0.19421951 -0.18479366 -0.16102319 -0.14074374 -0.19297108 -0.18775050 -0.18138736 -0.16252385 -0.13476167 17 -0.18384282 -0.18244298 -0.18060115 -0.17219056 -0.15176542 -0.17690948 -0.17855595 -0.18134839 -0.18545165 -0.18414103 -0.17262635 -0.17621896 -0.18241332 -0.19648957 -0.21473338 20 -0.17119671 -0.17545171 -0.18287948 -0.20070804 -0.22704867 NBAR= Я 9 10 11 12 S-IGMA= 1.08481491 1.07630727 1.06933174 1.06351329 1.05858862 -0.03840766 -0.00435041 -0.03808233 -0.00122493 -0.03706469 -0.06477068 -0.02982879 -0.05401372 -0.03351501 -0.04263494 -0.07959206 -0.07282682 -0.06064690 -0.07555938 -0.05187553 ``` -0.09515465 -0.11086834 -0.08507405 -0.09603788 -0.09029388 -0.12197212
-0.13052519 -0.12532618 -0.10826036 -0.12221461 -0.15649569 -0.14120843 -0.15329717 -0.13638863 -0.13042646 -0.18327332 -0.15822161 -0.15805993 -0.16392970 -0.14551913 -0.19008240 -0.17934312 -0.15954738 -0.16556927 -0.16728371 -0.18081670 -0.18751105 -0.17213461 -0.15759478 -0.16463601 -0.17237477 -0.17647367 -0.18047815 -0.16555237 -0.15263846 11 -0.17765939 -0.16355229 -0.16930523 -0.17366079 -0.16196257 12 -0.19146643 -0.16876304 -0.15621601 -0.16057481 -0.16757073 13 -0.19441254 -0.18522131 -0.16579068 -0.15101681 -0.15022574 14 -0.17277986 -0.18221748 -0.18093589 -0.16778068 -0.15107253 15 -0.13567331 -0.14397734 -0.15773758 -0.16762218 -0.16767882 -0.11170510 -0.07889327 -0.09830736 -0.10810981 -0.12353464 -0.12582973 -0.09830669 -0.07328799 -0.05433169 -0.04383813 18 -0.17609396 -0.16135866 -0.14063839 -0.11515118 -0.08650033 19 -0.23167315 -0.24644777 -0.25845229 -0.26720886 -0.27233603 20 -0.25541205 -0.28535400 -0.31667468 -0.34925553 -0.38301574 o de Arabitan de Santo de Caracter Cara A SOLI SINING THE SOLITION OF STATES SOLITION TO SELECTION STATES SOLITIONS DR=20 ``` 17 NBAR= 13 14 15 16 SIGMA= 1.05436802 1.05071145 1.04751351 1.04469343 1.04218817 0. -0.00019609 -0.03569476 -0.01287433 0.01040602 0.02562440 -0.03928935 -0.03277421 -0.04024003 -0.05096000 -0.05781596 -0.07091751 -0.05320225 -0.05684140 -0.05659904 -0.05618275 -0.07949854 -0.09319822 -0.08065226 -0.06976287 -0.06221182 -0.10747901 -0.10527246 -0.11059815 -0.11937528 -0.12481814 -0.14038631 -0.12440171 -0.12275942 -0.11543138 -0.11014531 -0.14473275 -0.15234536 -0.14231375 -0.13685546 -0.13248684 -0.15056682 -0.15007738 -0.15513230 -0.16166695 -0.16581389 -0.16644789 -0.15172164 -0.14700241 -0.13646926 -0.12838431 10 -0.15807837 -0.16309551 -0.15573670 -0.15528520 -0.15406407 11 -0.14797229 -0.14872995 -0.15398770 -0.15768050 -0.16045855 12 -0.16233955 -0.14823338 -0.14064441 -0.12895217 -0.12008953 13 -0.15830557 -0.16235627 -0.15801607 -0.16142073 -0.16283161 14 -0.14118177 -0.14255586 -0.14794594 -0.14886620 -0.15048688 15 -0.15792963 -0.14354329 -0.13239649 -0.12009591 -0.10972177 16 -0.13862886 -0.14823685 -0.15159614 -0.16083742 -0.16706074 -0.04269276 -0.05029004 -0.06173415 -0.06662710 -0.07300076 17 18 -0.05653933 -0.02713133 -0.00127208 0.01964416 0.03796622 19 -0.27354271 -0.27056591 -0.26502937 -0.26567152 -0.26480268 20 -0.41789471 -0.45384468 -0.49082606 -0.52880447 -0.56775054 NBAR= 18 19 SIGMA= 1.03994803 1.03793314 0.04003520 0.05348123 -0.06431041 -0.07037668 -0.05592510 -0.05575542 -0.05510047 -0.04850296 -0.13003820 -0.13493884 -0.10534381 -0.10097743 -0.12837797 -0.12458520 -0.16986157 -0.17367448 -0.12190268 -0.11552639 10 -0.15290609 -0.15183723 11 -0.16324907 -0.16589803 -0.11190125 -0.10444163 13 -0.16411666 -0.16525431 14 -0.15220664 -0.15388648 15 -0.10014918 -0.09145838 16 -0.17243416 -0.17702399 17 -0.07905940 -0.08469674 0.05375468 0.06732371 18 19 -0.26426301 -0.26405616 ``` 20 -0.60763703 -0.64844030 the state of the state of the state of ``` DR=25 A= 1.13655318 NBAR= SIGMA= 1.11726178 1.11251612 1.11837471 1.10318682 1.09121516 1 -0.05754114 -0.05270357 -0.05397997 -0.05134711 -0.03291442 2 -0.11296501 -0.10381367 -0.10632078 -0.10041886 -0.07279838 3 -0.16427243 -0.15178262 -0.15543776 -0.14543999 -0.12114170 -0.20969308 -0.19515808 -0.19985522 -0.18538913 -0.17231307 5 -0.24778231 -0.23263871 -0.23826125 -0.21988985 -0.21687070 6 -0.27749797 -0.26313624 -0.26956280 -0.24881532 -0.24744207 -0.29825267 -0.28584092 -0.29294083 -0.27183831 -0.26302116 8 -0.30993847 -0.30028506 -0.30790407 -0.28619453 -0.26873888 -0.31292246 -0.30639643 -0.31433784 -0.29682278 -0.27145065 10 -0.30801396 -0.30453297 -0.31254222 -0.29684998 -0.27447628 11 -0.29640550 -0.29549018 -0.30325180 -0.28620169 -0.27537205 12 -0.27959147 -0.28047482 -0.28762815 -0.27203339 -0.26834731 13 -0.25926975 -0.26104210 -0.26721728 -0.25074229 -0.24951428 14 -0.23723270 -0.23899762 -0.24386740 -0.22750510 -0.22106242 15 -0.21525432 -0.21627036 -0.21960757 -0.20550571 -0.19118504 16 -0.19498072 -0.19476690 -0.19649460 -0.18716264 -0.16962122 17 -0.17783086 -0.17622075 -0.17644196 -0.17366862 -0.16182582 18 -0.16491337 -0.16205175 -0.16104968 -0.16501134 -0.16579589 19 -0.15696482 -0.15325035 -0.15145649 -0.16042539 -0.17375134 20 -0.15431268 -0.15029930 -0.14823410 -0.15903396 -0.17750663 NBAR= 8 10 12 11 SIGMA= 1.08162032 1.07379328 1.06730300 1.06184234 1.05718888 -0.04940859 -0.02619006 -0.04789395 -0.02239269 -0.04631866 2 -0.09081476 -0.06610880 -0.08072604 -0.06566783 -0.07087355 3 -0.12403348 -0.11692632 -0.10666071 -0.11495981 -0.09733386 4 -0.15609859 -0.16299238 -0.14309277 -0.14826335 -0.14247888 -0.19265260 -0.19433050 -0.18771235 -0.17359928 -0.18094970 6 -0.23030208 -0.21604016 -0.22065056 -0.20640053 -0.19996761 -0.25831084 -0.23749396 -0.23381117 -0.23482200 -0.21979290 8 -0.26856349 -0.25709929 -0.24033130 -0.24144820 -0.24013738 -0.26392651 -0.26399765 -0.25026846 -0.23759001 -0.23999491 10 -0.25611496 -0.25474411 -0.25411881 -0.24132351 -0.23024981 11 -0.25442798 -0.24150614 -0.24234130 -0.24278477 -0.23270534 12 -0.25624483 -0.23813770 -0.22715903 -0.22792505 -0.23084104 13 -0.24923349 -0.24047572 -0.22532760 -0.21355323 -0.21149860 14 -0.22414626 -0.22817773 -0.22556164 -0.21524156 -0.20266719 15 -0.18633834 -0.19035729 -0.19827721 -0.20387009 -0.20299882 ``` 16 -0.15439227 -0.14545785 -0.14448158 -0.15049326 -0.16041560 17 -0.14581527 -0.12818327 -0.11174046 -0.09901930 -0.09181171 18 -0.16207028 -0.15365524 -0.14090474 -0.12458491 -0.10577160 19 -0.18653545 -0.19802754 -0.20770957 -0.21517994 -0.22012068 20 -0.19777394 -0.21940428 -0.24218929 -0.26600354 -0.29076248 A STATE OF THE PERSON P ``` NBAR= 15 17 13 16 SIGMA= 1.05317864 1.04968847 1.04662442 1.04391359 1.04149868 -0.02052752 -0.04472941 -0.02851177 -0.01196187 -0.00105699 -0.06771210 -0.06246794 -0.06702994 -0.07396317 -0.07827353 3 -0.10918339 -0.09584978 -0.09746293 -0.09648568 -0.09547839 -0.13347867 -0.14160879 -0.13169750 -0.12306186 -0.11686794 -0.16897536 -0.16587364 -0.16821308 -0.17314534 -0.17589693 -0.20480435 -0.19200788 -0.18936997 -0.18293674 -0.17806995 -0.21716050 -0.22062692 -0.21207332 -0.20688686 -0.20261464 -0.22653664 -0.22439616 -0.22634525 -0.22952987 -0.23121248 -0.23919168 -0.22723590 -0.22243044 -0.21373456 -0.20723468 10 -0.23206705 -0.23387287 -0.22729603 -0.22571013 -0.22373329 -0.22131197 -0.22031785 -0.22264823 -0.22405252 -0.22495594 -0.22564958 -0.21451960 -0.20806268 -0.19885971 -0.19172828 13 -0.21573351 -0.21737440 -0.21333194 -0.21481971 -0.21502325 -0.19487774 -0.19496796 -0.19794532 -0.19788579 -0.19838962 15 -0.19554729 -0.18497909 -0.17671322 -0.16767210 -0.15999389 16 -0.17023531 -0.17639071 -0.17831200 -0.18443430 -0.18852631 -0.09086920 -0.09589630 -0.10358278 -0.10670914 -0.11089944 18 -0.08574767 -0.06582938 -0.04813972 -0.03370522 -0.02093077 19 -0.22228774 -0.22146485 -0.21875421 -0.22025285 -0.22059871 20 -0.31640474 -0.34288326 -0.37015997 -0.39820361. -0.42698728 NBAR= 18 19 SIGMA= 1.03933407 1.03738298 0.00929328 0.01878586 -0.08240486 -0.08630300 -0.09466048 -0.09397130 -0.11106442 -0.10568697 -0.17862667 -0.18124999 -0.17365638 -0.16964303 -0.19864869 -0.19500802 -0.23297336 -0.23469835 -0.20126550 -0.19581026 -0.22192399 -0.22028143 ``` 11 -0.22599085 -0.22703352 12 -0.18514162 -0.17912529 13 -0.21523319 -0.21542048 14 -0.19903127 -0.19970666 15 -0.15288364 -0.14639525 16 -0.19208868 -0.19515400 17 -0.11490516 -0.11865277 18 -0.00981113 -0.00015734 19 -0.22108857 -0.22173530 20 -0.45648734 -0.48668348 The state of s The second of th ``` A= 1.31995942 NBAR= 5 SIGHA= 1.10891379 1.09658253 1.08635993 1.07790771 1.07086584 1 -0.07631211 -0.06939738 -0.05705892 -0.06548036 -0.04989391 2 -0.14938456 -0.13658328 -0.11724180 -0.12517200 -0.10753759 3 -0.21630525 -0.19935612 -0.18029189 -0.17788601 -0.17016092 4 -0.27474264 -0.25558125 -0.24154834 -0.22663168 -0.22675660 5 -0.32307300 -0.30331440 -0.29399646 -0.27350269 -0.26976975 6 -0.36036067 -0.34097104 -0.33198184 -0.31526357 -0.30125348 7 -0.38627633 -0.36748973 -0.35405887 -0.34462947 -0.32639989 8 -0.40084573 -0.38243247 -0.36310026 -0.35649656 -0.34414172 9 -0.40437994 -0.38598998 -0.36373575 -0.35305578 -0.34813605 10 -0.39736589 -0.37890191 -0.35903077 -0.34237738 -0.33700189 11 -0.38051024 -0.36233906 -0.34876803 -0.33124806 -0.31926738 12 -0.35486404 -0.33780749 -0.33047456 -0.31907292 -0.30451448 13 -0.32198114 -0.30711279 -0.30234578 -0.29895040 -0.29088864 14 -0.26403492 -0.27237936 -0.26588435 -0.26547794 -0.26609747 15 -0.24382144 -0.23607362 -0.22631897 -0.22212378 -0.22351646 16 -0.20460496 -0.20095816 -0.19047834 -0.18095597 -0.17508094 17 -0.16980622 -0.16991995 -0.16358993 -0.15436794 -0.14378105 18 -0.14258116 -0.14566496 -0.14717569 -0.14590717 -0.14156663 19 -0.12537499 -0.13033412 -0.13936906 -0.14836595 -0.15670198 20 -0.11955010 -0.12514269 -0.13723272 -0.15083983 -0.16557417 NBAR= 10 11 12 13 14 SIGMA= 1.06493725 1.05989175 1.05555356 1.05178821 1.04849198 1 -0.06268334 -0.04547940 -0.06036776 -0.04287494 -0.05836328 2 -0.11492044 -0.10366911 -0.10574208 -0.10254333 -0.09811475 3 -0.16095070 -0.16403879 -0.15067969 -0.15683687 -0.14663373 -0.21074872 -0.21125569 -0.20510816 -0.19717444 -0.20078734 5 -0.26166041 -0.24933011 -0.25136485 -0.24115820 -0.23708632 6 -0.29994411 -0.28724704 -0.28009082 -0.28071532 -0.27006008 -0.31971743 -0.31673250 -0.30388406 -0.29953739 -0.29955195 8 -0.32922075 -0.32636297 -0.32247161 -0.31095126 -0.30729856 -0.33534593 -0.32379159 -0.32248091 -0.31947630 -0.30943799 10 -0.33286628 -0.32150566 -0.31166857 -0.31060418 -0.30982650 11 -0.31653282 -0.31406297 -0.30516371 -0.29569492 -0.29331600 12 -0.29484176 -0.29305484 -0.29298789 -0.28788008 -0.27906188 13 -0.27913955 -0.26979041 -0.26694711 -0.26840461 -0.26831459 14 -0.26286052 -0.25491056 -0.24564754 -0.23962456 -0.23888461 15 -0.22755766 -0.23029025 -0.22897949 -0.22347227 -0.21598713 16 -0.17412422 -0.17763143 -0.18371073 -0.18978372 -0.19350990
``` DB=30 ndinativality of the second thinks the second of the green was second and the second 17 -0.13364512 -0.12566390 -0.12109061 -0.12050355 -0.12378193 18 -0.13427950 -0.12448810 -0.11287172 -0.10027070 -0.08756574 19 -0.16395153 -0.16979161 -0.17397018 -0.17629419 -0.17659616 20 -0.18123408 -0.19769632 -0.21487859 -0.23272227 -0.25118357 NBAR= 15 16 17 18 19 SIGMA= 1.04300080 1.04069141 1.03861506 -0.04715452 -0.03575943 -0.02816723 -0.02096322 -0.01420612 -0.10030224 -0.10417429 -0.10638363 -0.10855310 -0.11063810 -0.14649501 -0.14477641 -0.14315498 -0.14176014 -0.14053708 -0.17267119 -0.18557585 -0.18025671 -0.17531681 -0.17075937 -0.23687071 -0.23859216 -0.23903530 -0.23961880 -0.24026658 -0.26639407 -0.26042146 -0.25567498 -0.25138221 -0.24748456 -0.29188257 -0.28667989 -0.28227875 -0.27824159 -0.27455646 -0.30663031 -0.30701359 -0.30658744 -0.30638199 -0.30629916 -0.30438621 -0.29695312 -0.29115679 -0.28585641 -0.28101847 -0.30373173 -0.30115495 -0.29848432 -0.29606690 -0.29388160 -0.29334545 -0.29292960 -0.29232535 -0.29193715 -0.29166631 -0.27350336 -0.26625124 -0.26049032 -0.25518146 -0.25032737 -0.26459288 -0.26466880 -0.26398928 -0.26340195 -0.26287558 -0.24013780 -0.23943796 -0.23917648 -0.23906510 -0.23902903 -0.21007936 -0.20368963 -0.19823047 -0.19316343 -0.18852099 -0.19449431 -0.19833403 -0.20086910 -0.20309219 -0.20501712 -0.12878936 -0.13074980 -0.13342473 -0.13598899 -0.13639654 -0.07618477 -0.06684009 -0.05849443 -0.05116668 -0.04475006 19 -0.17558781 -0.17732112 -0.17822557 -0.17917080 -0.18017076 20 -0.27022821 -0.28982851 -0.30996158 -0.33060763 -0.35174996 The state of s ``` DB=35 1.50324775 NBAR= 5 SI3MA= 1.09833834 1.08914168 1.08086269 1.07369046 1.06753293 -0.10054630 -0.09207351 -0.08350874 -0.08657594 -0.07589462 -0.19633840 -0.18111148 -0.16689306 -0.16805755 -0.15482134 -0,28312135 -0.26393624 -0.24810510 -0.24195902 -0.23343001 -0.35753096 -0.33725826 -0.32263006 -0.30820619 -0.30338044 -0.41730149 -0.39795357 -0.38476244 -0.36633148 -0.35851760 -0.46126674 -0.44351960 -0.42990860 -0.41314802 -0.39892370 -0.48919017 -0.47252677 -0.45644028 -0.44370769 -0.42677052 -0.50150515 -0.48486232 -0.46594613 -0.45503541 -0.44176550 -0.49906437 -0.48164730 -0.46181381 -0.44908521 -0.44065177 10 ~0.48298371 -0.46485896 -0.44716589 -0.43176177 -0.42366794 11 -0.45462368 -0.43683092 -0.42353026 -0.40852016 -0.39723725 -0.41567665 -0.39986124 -0.39104029 -0.38049981 -0.36849349 13 -0.36843626 -0.35609944 -0.34987327 -0.34491763 -0.33760916 14 -0.31573553 .0.30773620 -0.30181412 -0.29956628 -0.29824395 15 -0.26116090 -0.25735294 -0.25081807 -0.24733391 -0.24724446 16 -0.20878210 -0.20818889 -0.20219568 -0.19645533 -0.19271628 -0.16281104 -0.16410203 -0.16099917 -0.15602003 -0.15000263 18 -0.12710568 -0.12913254 -0.13063503 -0.13058145 -0.12863079 19 -0.10463767 -0.10676524 -0.11249736 -0.11850870 -0.12428805 20 -0.09704580 -0.09914017 -0.10656569 -0.11527088 -0.12491388 NBAR# 10 11 12 13 14 SIGNA= 1.06223939 1.05766462 1.05368465 1.03019802 1.04712281 ``` 0. -0.08253281 -0.07082102 -0.07937469 -0.06748597 -0.07680978 2 -0.15704100 -0.14809476 -0.14775615 -0.14429266 -0.14021267 3 ~0.22451822 -0.22367075 -0.21287255 -0.21476615 -0.20643506 -0.2895/322 -0.28636903 -0:27953719 -0:27193944 -0:27205260 5 -0.34888338 -0.33725587 -0.33517060 -0.32574953 -0.32060597 -0.39301353 -0.38086431 -0.37275166 -0.37000683 -0.36043600 -0.41759235 -0.41141816 -0.39961606 -0.39366688 -0.39090230 -0.42769065 -0.42172369 -0.41567482 -0.40522603 -0.40019385 -0.42821379 -0.41711476 -0.41295019 -0.40813761 -0.39916049 10 -0.41702384 -0.40645285 -0.39726125 -0.37400693 -0.39124732 11 -0.39208075 -0.38756812 -0.37939261 -0.37115211 -0.36770718 -0.35978935 -0.35630557 -0.35420849 -0.34915728 -0.34192809 13 -0.32832874 -0.32074436 -0.31744147 -0.31704647 -0.31580918 14 -0.29483023 -0.28866613 -0.28180418 -0.27709919 -0.27586588 15 -0.24891075 -0.24990159 -0.34845673 -0.24442402 -0.23938244 -0.19190870 -0.19386614 -0.19746738 -0.20110306 -0.20327586 17 -0.14406522 -0.13931237 -0.13659073 -0.13632428 -0.13848387 18 -0.12476644 -0.11921425 -0.11237995 -0.10479285 -0.09702299 19 -0.12948554 -0.13384090 -0.13715456 -0.13927442 -0.14007197 20 -0.13530409 -0.14632267 -0.15789049 -0.16995199 -0.18246636 NBAR= 15 17 18 19 16 SIGMA= 1.04439302 1.04195538 1.03976654 1.03779110 1.03599986 -0.06899511 -0.06111435 -0.05575927 -0.05069179 -0.04593949 -0.14054644 -0.14209790 -0.14267192 -0.14331304 -0.14398160 -0.20479892 -0.20231270 -0.20003491 -0.19802917 -0.19624254 -0.26486073 -0.25854408 -0.25356523 -0.24898480 -0.24478093 -0.31824692 -0.31739376 -0.31591931 -0.31471980 -0.31372217 -0.35568415 -0.34969897 -0.34473184 -0.34024685 -0.33617867 -0.38350161 -0.37796806 -0.37318358 -0.36882871 -0.36486754 -0.39737926 -0.39551846 -0.39335297 -0.39152457 -0.38994447 -0.39368362 -0.38690108 -0.38138380 -0.37635828 -0.37177776 -0.38531254 -0.38187536 -0.37856149 -0.37557024 -0.37286594 10 -0.36603134 -0.36424721 -0.36249522 -0.36101992 -0.35974012 11 12 -0.33696969 -0.33105318 -0.32622355 -0.32178548 -0.31772610 -0.31235443 -0.31147350 -0.31019714 -0.30906466 -0.30804488 13 -0.27599172 -0.27491292 -0.27417581 -0.27358864 -0.27309776 14 -0.23500233 -0.23054040 -0.22670473 -0.22313857 -0.21985974 -0.20371946 -0.20605313 -0.20757027 -0.20891142 -0.21008063 -0.14172845 -0.14298032 -0.14469281 -0.14633563 -0.14788179 -0.09000350 -0.08421392 -0.07899627 -0.07437717 -0.07029972 -0.13999075 -0.14165220 -0.14273682 -0.14381195 -0.14488933 20 -0.19540247 -0.20873561 -0.22244620 -0.23651735 -0.25093546 money of the part of the second of the second The Heavisian Contraction of the STATE OF THE PROPERTY P 15 17 19 ``` DR=40 A= 1.68649887 NBAR= SIGMA= 1.08674867 1.08091597 1.07475226 1.06898566 1.06380524 -0.12746804 -0.11943076 -0.11328461 -0.11300453 -0.10530854 -0.24855252 -0.23431156 -0.22349673 -0.22041797 -0.20973797 ~0.35750416 -0.34001137 ~0.32664976 -0.31813068 -0.30878004 -0.44972188 -0.43193681 -0.41768677 -0.40353260 -0.39521014 -0.52205873 -0.50593246 -0.49133352 -0.47419137 -0.45342379 -0.57288695 -0.55887347 -0.54353670 -0.52682862 -0.51197039 -0.60195127 -0.58921674 -0.57266482 -0.55804509 -0.54166259 -0.61008861 -0.59728262 -0.57978471 -0.56645005 -0.55243120 -0.59891574 -0.58508770 -0.56789356 -0.55422229 -0.54350016 10 -0.57057772 -0.55580855 -0.54060685 -0.52638181 -0.51660433 -0.52761277 -0.51307255 -0.50107762 -0.48806511 -0.47737628 -0.47293726 -0.46037607 -0.45169876 -0.44217374 -0.43198992 -0.40990377 -0.40085320 -0.39459825 -0.38911991 -0.38253078 -0.34235308 -0.73744032 -0,33244697 -0.32939910 -0.32706961 -0.27457694 -0.27327780 -0.26896446 -0.26610537 -0.26521927 -0.21113454 -0.21206074 -0.20877256 -0.20537837 -0.20300789 -0.15651307 -0.15806385 -0.15668869 -0.15417434 -0.15092671 -0.11467588 -0.11571558 -0.31685938 -0.11726475 -0.11558525 19 -0.08858548 -0.08881597 -0.09213429 -0.09592554 -0.09974350 20 -0.07980827 -0.07967519 -0.08384907 -0.08911914 -0.09518922 NBAR= 10 11 12 13 14 SIGMA= 1.05921642 1.05516566 1.05158542 1.04841039 -0.10782968 -0.09952162 -0.10376029 -0.09541249 -0.10050741 -0.20833268 -0.20056775 -0.19833575 -0.19440338 -0.19027920 -0.29964519 -0.29579946 -0.28624712 -0.28491877 -0.27744701 -0.38221852 -0.37619309 -0.36839826 -0.36053036 -0.35786658 -0.45229605 -0.44056355 -0.43522005 -0.42578529 -0.41943141 -0.50276467 -0.49041845 -0.48108599 -0.47561720 -0.46626206 -0.53043045 -0.52167494 -0.51004047 -0.50252990 -0.49744949 -0.53854193 -0.53012138 -0.52221388 -0.51203399 -0.50565170 -0.53104524 -0.51991472 -0.51352712 -0.50717427 -0.49856344 -0.50822138 -0.49795880 -0.48894647 -0.48399617 -0.47967950 -0.47063964 -0.46470771 -0.45687851 -0.44929896 -0.44499315 -0.42396976 -0.41937663 -0.41591409 -0.41084831 -0.40460671 ``` College and the property of the college coll 13 -0.37496152 -0.36857389 -0.36499613 -0.36338846 -0.36139734 14 -0.32369360 -0.31679216 -0.31376074 -0.30976300 -0.30823273 15 -0.26548241 -0.26544921 -0.26400487 -0.26101122 -0.25730432 16 -0.20233291 -0.20333988 -0.20538739 -0.20749006 -0.20870347 17 -0.14760280 -0.14489819 -0.14337196 -0.14332624 -0.14477500 18 -0.11471582 -0.11174992 -0.10791089 -0.10351973 -0.09893532 19 -0.10335803 -0.10649493 -0.10901260 -0.11078908 -0.11172375 20 -0.10188036 -0.10907836 -0.11670687 -0.12471257 -0.13305697 NBAR= 15 16 17 18 19 SIGMA= 1.04305249 1.04077823 1.03872475 1.03686269 1.03516735 0. ٥. -0.09482126 -0.08916019 -0.08518196 -0.08143672 -0.07793198 -0.18912625 -0.18889873 -0.18816924 -0.18759324 -0.18713231 -0.27446064 -0.27113762 -0.26812328 -0.26543504 -0.26301909 -0.35086773 -0.34467897 -0.33956573 -0.33489330 -0.33062157 -0.41518427 -0.41218911 -0.40904340 -0.40629082 -0.46031825 -0.45389045 -0.44837509 -0.44339252 -0.43887085 -0.48978633 -0.48362075 -0.47819889 -0.47327906 -0.50103449 -0.49731426 -0.49365109 -0.49042517 -0.48755205 -0.47511697 -0.49248234 -0.48583189 -0.48021939 -0.47361847 -0.46938531 -0.46543250 -0.46186103 -0.45862547 -0.44203376 -0.43919564 -0.43654296 -0.43421320 -0.43213682 -0.39997461 -0.39487458 -0.39059447 -0.38308016 -0.38667047 -0.35811313 -0.35658396 -0.35489528 -0.35338151 -0.35201256 -0.30763520 -0.30632945 -0.30529744 -0.30441158 -0.30343257 -0.25430912 -0.25116260 -0.24843898 -0.24590426 -0.24356694 -0.20884773 -0.21022656 -0.21110469 -0.21188909 -0.21257887 -0.14689160 -0.14772195 -0.14884217 -0.14991654 -0.15092980 -0.09475770 -0.09130262 -0.08815947 -0.08535426 -0.08285883 -0.11208399 -0.11353805 -0.11459992 -0.11563326 -0.11664648 20 -0.14171096 -0.15065229 -0.15986323 -0.16932926 -0.17903839 A CONTROL OF THE PROPERTY T ``` DB=45 A= 1.86973822 SIGMA= 1.07425098 1.07196186 1.06806086 1.06381285 1.05969520 -0.15782680 -0.15201012 -0.14781509 -0.14559201 -0.13979262 -0.30737748 -0.29735223 -0.28960301 -0.28430249 -0.27512529 -0.44115431 -0.42947690 -0.41915655 -0.40968696 -0.39974835 -0.55308959 -0.54224494 -0.53027533 -0.51689482 -0.50634675 -0.63877415 -0.63045368 -0.61744056 -0.50180890 -0.58918028
6 -0.69661796 -0.69049658 -0.67676126 -0.66092625 -0.64574852 -0.72575733 -0.72092884 -0.70675949 -0.69192152 -0.67595700 8 -0.72777384 -0.72269538 -0.70859991 -0.69475762 -0.68042680 9 -0.70531841 -0.69888616 -0.68563800 -0.67233996 -0.66042106 10 -0.66193498 -0.65407151 -0.64249821 -0.62987496 -0.61931736 11 -0.60175340 -0.59344481 -0.58410079 -0.57313479 -0.56305859 -0.52927944 -0.52207676 -0.51502949 -0.50681533 -0.49803263 13 -0.44926706 -0.44452272 -0.43940348 -0.43415993 -0.42826339 14 -0.36662614 -0.36485067 -0.36113623 -0.35797098 -0.35520451 -0.28630760 -0.28695464 -0.28428697 -0.28196774 -0.28067284 -0.21312047 -0.21488408 -0.21321413 -0.21121306 -0.20965066 -0.15146620 -0.15291971 -0.15239044 -0.15120329 -0.14952444 18 -0.10501212 -0.10525848 -0.10592736 -0.10637243 -0.10626812 19 -0.07635887 -0.07537272 -0.07698265 -0.07916303 -0.08156896 20 -0.06677161 -0.06528184 -0.06724783 -0.07017034 -0.07379523 NBAR= 10 11 12 13 14 SIGHA= ``` 1.04387353 1.05587658 1.05240054 1.04925987 1.04642820 ``` -0.13960262 -0.13327565 -0.13457320 -0.12831384 -0.13049970 2 -0.27119737 -0.26385103 -0.26005365 -0.25546526 -0.25096967 3 -0.39013001 -0.38393214 -0.37468210 -0.37079018 -0.36339749 -0.49351437 -0.48512045 -0.47612551 -0.46749296 -0.46246597 5 -0.57671105 -0.56433885 -0.55628295 -0.54620051 -0.53844326 6 -0.63403409 -0.62100307 -0.61027316 -0.60239996 -0.59255847 -0.66311139 -0.65221347 -0.64010255 -0.63098545 -0.62382036 8 -0.66640903 -0.65600663 -0.64641066 -0.63587730 -0.62810732 9 -0.64780887 -0.63633273 -0.62812338 -0.62035534 -0.61155377 10 -0.60979123 -0.59951162 -0.59032275 -0.58396294 -0.57831897 11 -0.55534824 -0.54840531 -0.54061859 -0.53325109 -0.52816621 -0.49050279 -0.48516451 -0.48073927 -0.47554857 -0.46981459 13 -0.42185378 -0.41623399 -0.41243371 -0.40999296 -0.40745007 14 -0.35194013 -0.34786736 -0.34367342 -0.34043592 -0.33868515 15 -0.28010628 -0.27945628 -0.27802985 -0.27570824 -0.27298622 16 -0.20903185 -0.20942592 -0.21048456 -0.21161409 -0.21222230 17 -0.14772438 -0.14623186 -0.14541084 -0.14547299 -0.14644893 18 -0.10547459 -0.10399532 -0.10194063 -0.09949591 -0.09688174 19 -0.08395251 -0.08613283 -0.08797519 -0.08937865 -0.09026201 20 -0.07795531 -0.08254093 -0.08747783 -0.09271466 -0.09821423 ``` nicky organism of the control of the 2 -0.24852953 -0.24684544 -0.24498917 -0.24336135 -0.24192284 3 -0.35908432 -0.35479557 -0.35090923 -0.34741175 -0.34424719 4 -0.45505246 -0.44843832 -0.44276212 -0.43758781 -0.43296221 5 -0.53238270 -0.52744384 -0.52269648 -0.51845331 -0.51463790 6 -0.58524414 -0.57796584 -0.57156709 -0.56577004 -0.56049721 7 -0.61542369 -0.60831400 -0.60197670 -0.59622147 -0.59098266 8 -0.62181443 -0.61641342 -0.61133241 -0.60678097 -0.60267658 9 -0.60466464 -0.59770282 -0.59165323 -0.58614945 -0.58112910 10 -0.57186131 -0.56680785 -0.56215146 -0.55793053 -0.55409361 11 -0.52415537 -0.52042184 -0.51698270 -0.51390626 -0.51113079 12 -0.46525834 -0.46055450 -0.45650226 -0.45279050 -0.44939133 13 -0.40421945 -0.40220477 -0.40018429 -0.39836005 -0.39670337 14 -0.33759380 -0.33611679 -0.33487025 -0.33376810 -0.33278024 15 -0.27074732 -0.26844269 -0.26643123 -0.26455965 -0.26283041 16 -0.21218469 -0.21295193 -0.21342056 -0.21384607 -0.21422497 17 -0.14783551 -0.14840164 -0.14914938 -0.14986748 -0.15054719 18 -0.09447641 -0.09248756 -0.09066039 -0.08901682 -0.08754398 19 -0.09077979 -0.09198183 -0.09292325 -0.09383402 -0.09471927 20 -0.10394893 -0.10989789 -0.11604463 -0.12237606 -0.12888159 ``` DB=50 ``` A= 2.05297384 ``` NBAR= 10 R SIGMA= 1.06233878 1.06082310 1.05819330 1.05521651 1.05222903 1 -0.19091857 -0.18908859 -0.18643579 -0.18176361 -0.17985106 -0.37243599 -0.36888701 -0.36334723 -0.35536338 -0.34978131 3 -0.53557290 -0.53051961 -0.52200149 -0.51213298 -0.50208500 -0.67231038 -0.66605676 -0.65499946 -0.64365700 -0.63078634 -0.77626920 -0.76918668 -0.75657509 -0.74347375 -0.73006385 -0.84341873 -0.83591731 -0.82268654 -0.80824289 -0.79490777 -0.87260514 -0.86507802 -0.85246600 -0.83753069 -0.82366430 -0.86568422 -0.85854947 -0.84666824 -0.83294343 -0.81687570 -0.82715087 -0.82069548 -0.80969728 -0.7978281: -0.78520513 10 -0.76333066 -0.75776449 -0.74790797 -0.73758884 -0.72748637 11 -0.68135982 -0.67678617 -0.66853559 -0.65945607 -0.65128812 12 -0.58825413 -0.58467893 -0.57843601 -0.57099950 -0.56390362 13 -0.49031340 -0.48766975 -0.48343429 -0.47832862 -0.47274118 14 -0.39295507 -0.39113389 -0.38844833 -0.38565213 -0.38252769 15 -0.30088294 -0.29975969 -0.29801909 -0.29656921 -0.29550644 16 -0.21836629 -0.21781645 -0.21667085 -0.21556146 -0.21492039 17 -0.14938630 -0.14928840 -0.14877385 -0.14791853 -0.14693693 18 -0.09750423 -0.09773549 -0.09802727 -0.09810528 -0.09782114 -0.06547019 -0.06590197 -0.06693925 -0.06830467 -0.06978724 19 20 -0.05473824 -0.05523696 -0.05657953 -0.05855258 -0.06100190 NBAR= 12 13 14 15 11 SIGMA= 1.04937561 1.04671255 1.04425479 1.04199807 1.03992973 0. ٥. 1 -0.17459894 -0.17384400 -0.16868167 -0.16879215 -0.16487354 2 -0.34239670 -0.33722425 -0.33179452 -0.32662972 -0.32294568 3 -0.49401360 -0.48441205 -0.47830567 -0.47036140 -0.46461199 -0.62043688 -0.61004553 -0.60021924 -0.59296791 -0.58458334 -0.71678590 -0.70633343 -0.69507253 -0.68563552 -0.67764545 -0.78096109 -0.76866241 -0.75849541 -0.74755005 -0.73857704 -0.81099495 -0.79794477 -0.78708234 -0.77783958 -0.76823148 8 -0.80687603 -0.79566469 -0.78426493 -0.77494080 -0.76691234 -0.77323969 -0.76343393 -0.75423951 -0.74475553 -0.73678823 10 -0.71701503 -0.70737445 -0.69970894 -0.69278161 -0.68562875 11 -0.64361148 -0.63561851 -0.62808640 -0.62218142 -0.61717171 12 -0.55804546 -0.55286593 -0.54739963 -0.54176872 -0.53703374 13 -0.46756618 -0.46353084 -0.46043544 -0.45740551 -0.45406501 14 -0.37895357 -0.37534632 -0.37237573 -0.37039181 -0.36889376 15 -0.29444924 -0.29299096 -0.29103929 -0.28888177 -0.28706265 16 -0.21487640 -0.21526507 -0.21573822 -0.21592583 -0.21573870 17 -0.14609585 -0.14563372 -0.14569926 -0.14632725 -0.14721466 18 -0.09713301 -0.09608123 -0.09476542 -0.09331648 -0.09197029 19 -0.07123166 -0.07252260 -0.07357401 -0.07431794 -0.07483782 20 -0.06382284 -0.06694373 -0.07031438 -0.07389862 -0.07766978 ``` NBAR= 16 17 18 19 SIGMA= 1.03803398 1.03629452 1.03322336 1.03469577 -0.16109986 -0.15813582 -0.15537958 -0.15281877 -0.31992696 -0.31696891 -0.31430940 -0.31190844 -0.45914146 -0.45416288 -0.44964487 -0.44553015 -0.57701771 -0.57033588 -0.56423299 -0.55864797 5 -0.67072262 -0.66424761 -0.65838775 -0.65306496 6 -0.72999985 -0.72231776 -0.71532234 -0.70893333 -0.75979908 -0.75219059 -0.74525315 -0.73891438 -0.75979246 -0.75318991 -0.74720841 -0.74176744 -0.72907994 -0.72222646 -0.71596935 -0.71024381 10 -0.67961785 -0.67409540 -0.66906339 -0.66446789 11 -0.61254515 -0.60829454 -0.60444648 -0.60094515 12 -0.53235874 -0.52823553 -0.52445383 -0.52098330 13 -0.45159897 -0.44923002 -0.44707680 -0.44511212 -0.36722073 -0.36575513 -0.36443755 -0.36324366 15 -0.28523632 -0.28362536 -0.28212877 -0.28074496 16 -0.21608261 -0.21625889 -0.21642582 -0.21657825 -0.14758791 -0.14607871 -0.14855368 -0.14900706 18 -0.09086164 -0.08983308 -0.08890131 -0.08806097 19 -0.07578849 -0.07657124 -0.07732951 -0.07806548 20 -0.08160767 -0.08569678 -0.08992477 -0.09428173 the second beautiful and the second s ``` A= 2.23620829 NBAR= 7 10 11 SIGMA= 1.05307519 1.05214956 1.05038384 1.04828368 1.04609776 ٥. 1 -0.24001662 -0.23936716 -0.23497200 -0.23215082 -0.22747331 2 -0.46684323 -0.46368528 -0.45747516 -0.45115835 -0.44358707 3 -0.66826712 -0.66385021 -0.65554161 -0.64562611 -0.63618223 4 -0.83397479 -0.82860921 -0.81867349 -0.80628350 -0.79448186 5 -0.95635950 -0.95037496.-0.93911863 -0.92573120 -0.91164806 6 -1.03114368 -1.02486689 -1.01279321 -0.99912893 -0.98439769 7 -1.05772741 -1.05147438 -1.03941213 -1.02561072 -1.01167302 8 -1.03916489 -1.03323349 -1.02202937 -1.00861536 -0.99550549 9 -0.98170032 -0.97635125 -0.96647509 -0.95449722 -0.94215731 10 -0.89387907 -0.88930617 -0.88082147 -0.67095461 -0.86033922 11 -0.78537296 -0.78167636 -0.77456869 -0.76661224 -0.75848628 12 -0.66577139 -0.66295006 -0.65736948 -0.65091360 -0.64474263 13 -0.54362360 -0.54159396 -0.53770419 -0.53287775 -0.52797399 14 -0.42593744 -0.42457054 -0.42222139 -0.41933427 -0.41604917 15 -0.31816407 -0.31732436 -0.31600827 -0.31469384 -0.31334516 16 -0.22450939 -0.22407892 -0.22328369 -0.22259014 -0.22220273 17 -0.14830354 -0.14818579 -0.14775272 -0.14716981 -0.14662511 18 -0.09218879 -0.09229819 -0.09236851 -0.09227344 -0.09195659 19 -0.05803510 -0.05828462 -0.05890584 -0.05972447 -0.06060803 20 -0.04667485 -0.04697166 -0.04783808 -0.04913680 -0.05077029 NBAR= 12 13 14 15 16 SIGMA= 1.04394838 1.04189378 1.03995894 1.03815146 1.03646994 ٥. ٥. 1 -0.22523406 -0.22049265 -0.21900300 -0.21513808 -0.21145288 2 -0.43716413 -0.43069786 -0.42455155 -0.41950815 -0.41507992 3 -0.62581710 -0.61761420 -0.60854300 -0.60108568 -0.59407770 4 -0.78257551 -0.77115218 -0.76156238 -0.75160273 -0.74248323 5 -0.89900903 -0.88608785 -0.87456849 -0.86430519 -0.85508407 6 -0.97043046 -0.95789542 -0.94521638 -0.93412186 -0.92365840 7 -0.99739573 -0.98455722 -0.97301556 -0.96161675 -0.95132725 8 -0.98272823 -0.96999848 -0.95880249 -0.94874917 -0.93961752 -0.93089472 -0.92014252 -0.90946885 -0.90002455 -0.89104922 ``` itt kinteestaanin ja kiesa Tag. DB=55 10 -0.85005698 -0.84103998 -0.83269066 -0.82445470 -0.81719221 11 -0.75010140 -0.74206092 -0.73516665 -0.72902869 -0.72333946 12 -0.63890462 -0.63297330 -0.62706330 -0.62185071 -0.61682806 13 -0.52345037 -0.51993433 -0.51635629 -0.51269361 -0.50968853 14 -0.41269695 -0.40973828 -0.40743439 -0.40550336 -0.40353461 15 -0.31177948 -0.30994805 -0.30802392 -0.30634623 -0.30470309 16 -0.22209604 -0.22206632 -0.22190579 -0.22154400 -0.22154331 17 -0.14628720 -0.14626707 -0.14660081 -0.14710930 -0.14730642 18 -0.09142109 -0.09071522 -0.08991400 -0.08916264 -0.08854840 19 -0.06145695 -0.06219639 -0.06276797 -0.06321091 -0.06393018 20 -0.05267017 -0.05478773 -0.05708775 -0.05954416 -0.06213724 ``` 19
NBAR= 18 ``` SIGMA= 1.03490847 1.03345919 1.03211342 | 0 | 0. | 0. | 0. | |----|-------------|-------------------------|-------------| | 1 | -0.20837338 | -0.20551398 | -0.20285964 | | 2 | -0.41087897 | -0.40704554 | -0.40354147 | | 3 | -0.58764392 | -0.59175072 | -0.57634367 | | 4 | -0.73424248 | -0.72667068 | -0.71970695 | | 5 | -0.84650535 | -0.83865605 | -0.83146246 | | 6 | -0.91413084 | -0.90538859 | -0.89735546 | | 7 | -0.94192236 | -0.93328669 | -0.92534969 | | 8 | -0.93115289 | -0.92340395 | -0.91629703 | | 9 | -0.88291171 | -0.87543407 | -0.86855527 | | 10 | -0.81049082 | -0.80433923 | -0.79868644 | | 11 | -0.71808914 | -0.71328517 | -0.70887900 | | 12 | -0.61230232 | -0.60813338 | -0.60429219 | | 13 | -0.50685227 | -0.50425405 | -0.50186948 | | 14 | -0.40176527 | -0.40015457 | -0.39868253 | | 15 | -0.30323281 | -0.30186885 | -0.30060736 | | 16 | -0.22146255 | -0.22139834 | -0.22134457 | | 17 | -0.14758679 | ~0.14786522 | -0.14813706 | | 18 | -0.08797400 | -0.08745103 | -0.08697740 | | 19 | -0.06454665 | -0.06514821 | -0.06573474 | | 24 | A ALABEADA | A . 1. 1. 7. 7. 7. 7. 4 | -0 07040400 | ``` DB=60 A= 2.41944236 NBAR= 11 12 8 10 SIGMA= 1.04570526 1.04521270 1.04405108 1.04257439 1.04097269 1 -0.30687990 -0.30569273 -0.30294056 -0.29674886 -0.29543962 -0.59575239 -0.59339596 -0.58783127 -0.58040466 -0.57292444 3 -0.84997807 -0.84655374 -0.83841495 -0.82850195 -0.81727865 -1.05568366 -1.05142726 -1.04141523 -1.02919419 -1.01589635 5 -1.20306279 -1.19831140 -1.18728352 -1.17325668 -1.15878077 -1.28729846 -1.28239229 -1.27099194 -1.25638090 -1.24090774 -1.30884309 -1.30404621 -1.29272792 -1.27863152 -1.26316370 8 -1.27299048 -1.26848769 -1.25777373 -1.24458754 -1.23046951 ~1.18889984 -1.18484177 -1.17532207 -1.16331458 -1.15084551 10 -1.06832661 -1.06485263 -1.05688819 -1.04667866 -1.03576225 11 -0.92425056 -0.92145871 -0.91504302 -0:90704408 -0.89823808 12 -0.76950517 -0.76740712 -0.76240096 -0.75633461 -0.74994938 13 -0.61552090 -0.61403800 -0.61041209 -0.60586659 -0.60124595 14 -0.47139321 -0.47040216 -0.46812191 -0.46511480 -0.46181575 15 -0.34351606 -0.34290167 -0.34167429 -0.34017104 -0.33844389 16 -0.23586323 -0.23553766 -0.23488618 -0.23425024 -0.23373267 17 -0.15070860 -0.15059891 -0.15022939 -0.14978867 -0.14942880 18 -0.08936235 -0.08939735 -0.08934595 -0.08916846 -0.08885894 -0.05255459 -0.05266773 -0.05300764 -0.05346813 -0.05396602 -0.04039544 -0.04053219 -0.04105989 -0.04189302 -0.04296890 17 NBAR= 13 14 15 16 SIGMA= 1.03934908 1.03775908 1.03623155 1.03478023 1.03341030 -0.29065786 -0.28777699 -0.28352327 -0.27945678 -0.27586909 -0.56522970 -0.55772760 -0.55101478 -0.54486103 -0.53904584 -0.80695678 -0.79614680 -0.78647710 -0.77732874 -0.76881404 -1.00250538 -0.99020472 -0.97788305 -0.96636942 -0.95573876 5 -1.14376673 -1.12957823 -1.11637788 -1.10415329 -1.09270199 -1.22582364 -1.21066885 -1.19669874 -1.18345364 -1.17117646 -1.24807100 -1.23375428 -1.21974686 -1.20675121 -1.19468291 -1.21599077 -1.20240769 -1.18972740 -1.17792493 -1.16688716 -1.13833343 -1.12586626 -1.11431879 -1.10332510 -1.09315978 10 -1.02525555 -1.01515110 -1.90526537 -0.99620581 -0.98775374 ``` 148 11 - 0.88937384 - 0.88117753 - 0.87356504 - 0.86641134 - 0.85973720 12 - 0.74334510 - 0.73674627 - 0.73065599 - 0.72481463 - 0.71943694 13 -0.59685498 -0.59255817 -0.58827656 -0.58450113 -0.58094244 14 -0.45864785 -0.45587130 -0.45337322 -0.45091859 -0.44866296 15 -0.33652785 -0.33455812 -0.33276478 -0.33103167 -0.32945049 16 -0.23327814 -0.23276764 -0.23216161 -0.23181109 -0.23144081 17 -0.14925124 -0.14929965 -0.14947544 -0.14947446 -0.14954126 18 -0.08844119 -0.08795892 -0.08750195 -0.08712785 -0.08677693 19 -0.05443702 -0.05483071 -0.05515963 -0.05567173 -0.05612686 70 -0.04424161 -0.04567730 -0.04725063 -0.04894225 -0.05073730 NBAR= 18 19 the state of s Section of the Section of Section Sect Constitution in the contraction of the contraction of the Sound on the Contraction of SIGMA= the contraction of the second 1.03212194 1.03091270 ٥. ٥. -0.27252140 -0.26940258 -0.53366425 -0.52868892 3 -0.76092185 -0.75361347 4 -0.94587139 -0.93672366 5 -1.08209239 -1.07227239 -1.15978737 -1.14923276 7 -1.18348382 -1.17310417 B -1.15665864 -1.14718796 9 -1.08372358 -1.07497406 10 -0,97991253 -0,97264650 11 -0.85355587 -0.84783390 12 -0.71444110 -0.70980683 13 -0.57764776 -0.57459959 -0.44656289 -0.44466396 15 -0.32797991 -0.32661612 16 -0.23110991 -0.23081208 17 -0.14962106 -0.14970934 18 -0.08645690 -0.08616667 19 -0.05657768 -0.05702214 20 -0.05262416 -0.05459357 ``` DR=65 2.60267633 NBAR= 9 10 11 12 13 SIGHA= 1.03971924 1.03954232 1.03881332 1.03779113 1.03662488 1 -0.40532029 -0.40448563 -0.40139018 -0.39753282 -0.39245208 2 -0.78493879 -0.78345021 -0.77764167 -0.76974124 -0.76074856 -1.11565712 -1.11370218 -1.10565031 -1.09424113 -1.08185515 -1.37884469 -1.37650457 -1.36665541 -1.35292722 -1.33742415 -1.56191355 -1.55924412 -1.54819481 -1.53307493 -1.51579395 6 -1.65925340 -1.65641587 -1.64494888 -1.62907960 -1.61142886 7 -1.67257466 -1.66981022 -1.65863425 -1.64297968 -1.62555031 8 -1.61040187 -1.60788669 -1.59747094 -1.58305113 -1.56664242 9 -1.48659221 -1.48437271 -1.47507495 -1.46233821 -1.44800255 10 -1.31818841 -1.31626753 -1.30842313 -1.29752754 -1.26548810 11 -1.12322533 -1.12165108 -1.11541659 -1.10668035 -1.09682119 12 -0.91893640 -0.91776381 -0.91302407 -0.90653465 -0.89913583 13 -0.72036822 -0.71956935 -0.71612556 -0.71146341 -0.70635921 14 -0.53925178 -0.53872061 -0.53644729 -0.53324804 -0.52972401 15 -0.38326388 -0.38291016 -0.38162399 -0.37980437 -0.37766498 16 -0.25609532 -0.25589184 -0.25523521 -0.25442967 -0.25357451 17 -0.15850113 -0.15843271 -0.15807840 -0.15764301 -0.15726078 18 -0.08984568 -0.08985761 -0.08973710 -0.08950290 -0.08918196 19 -0.04926669 -0.04929442 -0.04945046 -0.04967517 -0.04991867 20 -0.03595290 -0.03597587 -0.03627031 -0.03678529 -0.03748104 NBAR= 17 18 15 16 SIGMA= 1.03540163 1.03417240 1.03296676 1.03180143 1.03048523 -0.38818598 -0.38305383 -0.37804914 -0.37341981 -0.36904556 -0.75141966 -0.74243605 -0.73385636 -0.72564328 3 -1.06859156 -1.05582225 -1.04345050 -1.03168952 -1.02060898 -1.32177548 -1.30590525 -1.29061468 -1.27613483 -1.26248468 5 -1.49812247 -1.48080197 -1.46418527 -1.44834147 -1.43341695 6 -1.59287213 -1.57476126 -1.55719517 -1.54052980 -1.52482328 7 -1.60770747 -1.58980471 -1.57261670 -1.55629642 -1.54091339 8 -1.54992723 -1.53352348 -1.51775256 -1.50272784 -1.48857492 -1.43298609 -1.41830453 -1.40403782 -1.39052211 -1.37778218 10 -1.27309410 -1.26066016 -1.24879794 -1.23751310 -1.22688001 11 -1.08685745 -1.07711099 -1.06770307 -1.05875428 -1.05033039 12 -0.89137722 -0.88381328 -0.87644084 -0.86947752 -0.86291563 13 -0.70107237 -0.69572836 -0.69072961 -0.68595636 -0.68146782 ``` WAR. The second secon Someon matter states Lesses months with the contraction of contracti **"大学"的大学** 14 -0.52626103 -0.52293065 -0.51965563 -0.51656795 -0.51367192 15 -0.37539540 -0.37320578 -0.37107055 -0.36906985 -0.36718874 16 -0.25266169 -0.25169368 -0.25090433 -0.25013329 -0.24942128 17 -0.15700315 -0.15683553 -0.15657578 -0.15637717 -0.15620624 18 -0.08880932 -0.08844633 -0.08813564 -0.08784316 -0.08757461 19 -0.05013992 -0.05033714 -0.05066092 -0.05096005 -0.05126489 20 -0.03832683 -0.03929884 -0.04037863 -0.04155163 -0.04280625 #### 19 NBAR= ### SIGHA= 1.02962214 - ٥. -0.36493282 -0.71066475 -1.01021987 -1,24967998 -1.41942668 -1.51009203 -1.52648510 -1.36583175 ÷1.21691008 -1.04243684 -0.85676256 - 13 -0.67726638 14 -0.51096678 15 -0.36542957 - 17 -0.15605977 - 18 -0.08732973 19 -0.05157228 - 20 -0.04413339 ``` BR=70 2,78591025 15 13 14 NEAR= 11 12 SIGMA= 1.03482272 1.03440964 1.03372557 1.03288995 1.03197660 -0.56311377 -0.56009278 -0.55492219 -0.54917761 -0.54248814 -1.08846802 -1.08259762 -1.07296306 -1.06133720 -1.04898718 -1.54212744 -1.53384796 -1.52040577 -1.50399689 -1.48656437 -1.89723682 -1.86717672 -1.87066118 -1.85096464 -1.82958099 -2.13638669 -2.12524375 -2.10690469 -2.08491012 -2.06137550 6 -2.253/2152 -2.24155578 -2.2226R117 -2.19980308 -2.17536277 -2.25191051 -2.24060097 -2.22210202 -2.19992703 -2.17596236 -2.14682496 -2.13635382 -2.11912137 -2.09849453 -2.07641879 -1.95910775 -1.94985432 -1.93471991 -1.91640222 -1.89682592 ~1.71422003 -1.70641115 -1.69369797 -1.67843677 -1.66195016 11 -1.43865228 -1.43241242 -1.42215665 -1.40993239 -1.39687780 12 -1.15691020 -1.15219563 -1.14445449 -1.13508216 -1.12508556 13 -0.88933043 -0.86593917 -0.88046978 -0.87389962 -0.86678613 -0.65096860 -0.64868478 -0.64496458 -0.64059235 -0.63596597 15 -0.45111140 -0.44973939 -0.44744848 -0.44466214 -0.44170889 16 -0.29321308 -0.29248184 -0.29133343 -0.28994763 -0.28842848 -0.17592680 -0.17554583 -0.17498055 -0.17438440 -0.17380476 18 -0.09558040 -0.09541662 -0.09510782 -0.09471341 -0.09429615 19 -0.04881389 -0.04885328 -0.04891206 -0.04096976 -0.04902161 -0.03355573 -0.03369138 -0.03398596 -0.03441713 -0.03496580 NBAR= 16 17 18 17 SIGMA- 1.03103155 1.03008354 1.02915037 1.02824280 -0.53565500 -0.52901473 -0.52259642 -0.51646336 -1.03650177 -1.02417982 -1.01228583 -1.00093663 3 -1.46883066 -1.45138164 -1.43453498 -1,41845557 -1.80787565 -1.78655563 -1.76596709 -1.74631259 -2.03753674 -2.01405099 -1.99137807 -1.96974008 ``` **BACHOOO**S COST COMPANY CONTRACTOR na Oto 2 -1.03650177 -1.02417982 -1.01228583 -1.00093663 3 -1.46883066 -1.45138164 -1.43453498 -1.41845557 4 -1.80787565 -1.78655563 -1.76596709 -1.74631259 5 -2.03753674 -2.01405099 -1.99137807 -1.96974008 6 -2.15048862 -2.12603748 -2.10242879 -2.07989329 7 -2.15167990 -2.12780321 -2.10474885 -2.08274305 8 -2.05404168 -2.03200716 -2.01073837 -1.99044207 9 -1.87689003 -1.85731061 -1.83840832 -1.82036739 10 -1.64529317 -1.62891594 -1.61310481 -1.57801857 11 -1.38362890 -1.37059760 -1.35802793 -1.34603971 2 -1.11489858 -1.10491400 -1.09528176 -1.08609474 13 -0.85966976 -0.85266391 -0.85264689 -0.61793909 15 -0.43870593 -0.43577935 -0.43296468 -0.4392832 16 -0.28698319 -0.28555576 -0.28419415 -0.28290856 17 -0.17316171 -0.27256528
-0.17200521 -0.17148459 18 -0.09390172 -0.09352009 -0.09316018 -0.09282455 19 -3.04916095 -0.04929664 -0.04944642 -0.04960710 20 -0.03561599 -0.03635444 -0.03717022 -0.03805423 ``` DR=75 2.96914416 13 14 15 16 NBAR= 12 SIGMA= 1,03022753 1,02964683 1,02897666 1.03083444 1.03065580 -0.85819915 -C.85532947 -0.64854360 -0.83925460 -0.82871000 -1.65578571 -1.65022409 -1.63698515 -1.61938676 -1.59951920 -2.33843318 -2.33060092 -2.31199095 -2.28724059 -2.25923064 -2.86392674 -2.85443038 -2.83190894 -2.80175421 -2.76764685 -3.20632511 -3.19581300 -3.17081517 -3.13751116 -3.09988371 -3.35768601 -3.34680411 -3.32094076 -3.28648853 -3.24749261 -3.32765123 -3.31703726 -3.29187989 -3.25824967 -3.22024497 -3.14110455 -3.13129374 -3.10798359 -3.07693630 -3.04185525 ``` 9 -2.83386925 -2.82521829 -2.80464360 -2.77723986 -2.74622104 10 -2.44732529 -2.44004595 -2.42281920 -2.39980021 -2.37382677 11 -2.02326471 -2.01744998 -2.60366402 -1.98532974 -1.96461305 12 -1.59942556 -1.59501867 -1.58451647 -1.57054325 -1.55473032 13 -1.20593059 -1.20275520 -1.19526458 -1.18525386 -1.17400613 14 -0.86351194 -0.86136345 -0.85631123 -0.84962687 -0.84206423 15 -0.58356746 -0.58223630 -0.57903577 -0.57478820 -0.56999135 16 -0.36879532 -0.36804244 -0.36627521 -0.36390704 -0.36129348 17 -0.21445232 -0.21405473 -0.21317154 -0.21203904 -0.21073309 18 -0.11184821 -0.11167094 -0.11121665 -0.11061240 -0.10995016 19 -0.05323831 -0.05320909 -0.05312766 -0.05301271 -0.05293698 20 -0.03424989 -0.03427829 -0.03440760 -0.03463502 -0.03495421 TONING CONTROLL CONTROLL SOND CONTROLL SOND CONTROLL SOND CONTROLL CONTROL C NBAR= 17 18 19 #### SIGMA= 1.02825822 1.02751865 1.02677573 -0.81770855 -0.80664230 -0.79578144 -1.57866870 -1.55770457 -1.53713988 3 -2.22986820 -2.20034397 -2.17137986 -2.73191667 -2.69598776 -2.66073859 -3.06042230 -3.02074647 -2.98182609 -3.20663220 -3.16554893 -3.12524605 -3.18042096 -3.14038134 -3.10110435 -3.00507739 -2.96810663 -2.93184542 -2.71373704 -2.68108383 -2.64905772 10 -2.34661231 -2.31926185 -2.29244214 11 -1.94291127 -1.92110880 -1.89973579 12 -1.53819159 -1.52157882 -1.50529611 13 -1.16222577 -1.15040155 -1.13882022 14 -0.83416395 -0.82624207 -0.81848976 15 -0.56499127 -0.55998065 -0.55508089 16 -0.35855881 -0.35582805 -0.35316614 17 -0.20939259 -0.20806094 -0.20676956 18 -0.10926450 -0.10858487 -0.10792729 19 -0.05286037 -0.05279923 -0.05275464 20 -0.03535749 -0.03583709 -0.03638556 ``` DR=80 ``` A= 3.15237805 ``` 17 NRARE 13 14 15 16 SIGMA= 1.02742040 1.02741805 1.02718595 1.02680436 1.02632730 1 -1.58502102 -1.58480850 -1.57258637 -1.55279876 -1.52873235 2 -3.05208236 -3.05185124 -3.02840322 -2.99060532 -2.94457034 3 -4.29688382 -4.29658681 -4.26367486 -4.21057725 -4.14592624 -5.23967397 -5.23922759 -5.19927573 -5.13479346 -5.05629462 5 -5.83308757 -5.83262670 -5.78844464 -5.71719593 -5.63043952 -6.06605726 -6.06562161 -6.02001983 -5.94643998 -5.85686624 -5.96216673 -5.96168942 -5.91729326 -5.84567207 -5.75848538 8 -5.57349145 -5.57305575 -5.53204054 -5.46590602 -5.38539332 ~4.97193587 -4.97159248 -4.93548083 -4.87722004 -4.80631590 10 -4.23859578 -4.23827350 -4.20798308 -4.15914720 -4.09971118 11 -3.45286638 -3.45259959 -3.42839915 -3.38939112 -3.34192339 12 -2.68402240 -2.68385604 -2 6544106 -2.63574061 -2.59961790 13 -1.98545486 -1.98531554 -1.97206627 -1.95073411 -1.92478499 14 -1.39138004 -1.39126782 -1.38228972 -1.36782627 -1.35024725 15 -0.91741628 -0.91737556 -0.91166112 -0.90245345 -0.89127194 16 -0.56365303 -0.56362231 -0.56031031 -0.55500164 -0.54855212 17 -0.31755384 -0.31751583 -0.31578417 -0.31299214 -0.30961602 18 -0.15923030 -0.15923452 -0.15839060 -0.15704033 -0.15540659 19 -0.07076067 -0.07078616 -0.97050167 -0.07006905 -0.06954918 20 -0.04236177 -0.04234225 -0.04230141 -0.04228378 -0.04231567 NBAR= 18 19 ``` The Contract of o #### SIGMA= 1.02579151 1.02522214 0 0. 0. - 1 -1.50252389 -1.47558002 2 -2.89044357 -2.84291738 - 3 -4.07552856 -4.09316447 - 4 -4.97081822 -4.88295424 - 5 -5.53597617 -3.43887913 - 6 -5.75933790 -5.65909136 - 7 -5.66356039 -5.56599379 - 8 -5.29774248 -5.20765736 - 9 -4.72913050 -4.64980793 10 -4.03501803 -3.96854159 - 11 -3.29026699 ~3.23719537 - 12 -2,56031400 -2,51993972 - 13 ~3.89656071 ~1.86757765 - 14 -1.33113574 -1.31151886 - 15 -0.87912116 -0.86665486 16 -0.54155239 -0.53437945 - 17 -0,30595797 -0,30221583 - 10 -0.15363916 -0.15183376 - 19 -0.06899779 -0.06844609 20 -0.04241052 -0.04257395 ## <del>୰୶୰୶୵୶୵୶୵୶୵୶୰୰୰୰୰</del> # MISSION of Rome Air Development Center RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications $(C^3)$ activities, and in the $C^3$ areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.